@article{SM_1994_79_1_a13,
author = {V. I. Zenkov},
title = {A uniqueness theorem and intersections of nilpotent subgroups in finite groups},
journal = {Sbornik. Mathematics},
pages = {223--229},
year = {1994},
volume = {79},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_79_1_a13/}
}
V. I. Zenkov. A uniqueness theorem and intersections of nilpotent subgroups in finite groups. Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 223-229. http://geodesic.mathdoc.fr/item/SM_1994_79_1_a13/
[1] Gagen E. M., “Nekotorye voprosy teorii konechnykh grupp”, K teorii konechnykh grupp, Mir, M., 1979
[2] Brodkey I. S., “A note onfinite grops with an abelian Sylow group”, Proc. Amer. Math. Soc., 4 (1963), 32–34 | MR
[3] Gorenstein D., Finite groups, Harper and Row, N.Y., 1968 | MR | Zbl
[4] Gorenstein D., Harada K., “Finite groups whose $2$-subgroups are generated by at most 4 elements”, Mem. Amer. Math. Soc., 47, Amer. Math. Soc., Providence, RI, 1974, 464 | MR
[5] Herzog M., “On $2$-Sylov intersections”, Isr. J. Math., 11 (1972), 326–327 | DOI | MR | Zbl
[6] Herzog M., “On Sylov intersections”, Proc. Amer. Math. Soc., 37 (1973), 352–354 | DOI | MR | Zbl
[7] Ito N., “Über den kleisten $p$-Durschschitt aufflösbarer Gruppen”, Arch. Math., 9 (1958), 27–32 | DOI | MR | Zbl
[8] Laffey T. J., “A remark on minimal Sylov inretsection”, Bull. London Math. Soc., 4 (1972), 377 | DOI | MR | Zbl
[9] Robinson G. R., “Maximal $p$-locals”, Proc. Amer. Math. Soc., 92 (1984), 325–326 | DOI | MR | Zbl
[10] Thompson J. G., “Nonsolvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74 (1968), 383–437 | DOI | MR | Zbl