Averaging of boundary value problems with a singular perturbation of the boundary conditions
Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 191-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary value problems with different conditions on alternating small parts of the boundary are considered. An investigation is made of the behavior of solutions of such problems as the small parameter characterizing the period of change of the type of the boundary conditions goes to zero, and estimates are given for the deviation of these solutions from the solutions of the limit problem in various cases. The spectral properties of these problems are studied from a unified point of view on the basis of general methods (see [4], [9]).
@article{SM_1994_79_1_a12,
     author = {G. A. Chechkin},
     title = {Averaging of boundary value problems with a~singular perturbation of the~boundary conditions},
     journal = {Sbornik. Mathematics},
     pages = {191--222},
     year = {1994},
     volume = {79},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_1_a12/}
}
TY  - JOUR
AU  - G. A. Chechkin
TI  - Averaging of boundary value problems with a singular perturbation of the boundary conditions
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 191
EP  - 222
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_1_a12/
LA  - en
ID  - SM_1994_79_1_a12
ER  - 
%0 Journal Article
%A G. A. Chechkin
%T Averaging of boundary value problems with a singular perturbation of the boundary conditions
%J Sbornik. Mathematics
%D 1994
%P 191-222
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_79_1_a12/
%G en
%F SM_1994_79_1_a12
G. A. Chechkin. Averaging of boundary value problems with a singular perturbation of the boundary conditions. Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 191-222. http://geodesic.mathdoc.fr/item/SM_1994_79_1_a12/

[1] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962

[2] Gadylshin R. R., “Rasscheplenie kratnogo sobstvennogo znacheniya v kraevoi zadache dlya membrany, zakreplennoi na malom uchastke granitsy”, Sib. matem. zhurn., 34:3 (1993), 43–61 | MR | Zbl

[3] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986 | MR

[4] Iosifyan G. A., Oleinik O. A., Shamaev A. S., “O predelnom povedenii spektra posledovatelnosti operatorov, zadannykh v razlichnykh gilbertovykh prostranstvakh”, UMN, 44:3 (1989), 157–158 | MR

[5] Kondratev V. A., Oleinik O. A., “O periodicheskikh po vremeni resheniyakh parabolicheskogo uravneniya vtorogo poryadka vo vneshnikh oblastyakh”, Vestnik MGU. Matem., mekhan., 1985, no. 4, 38–47 | MR | Zbl

[6] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[7] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Seriya matem., 48:2 (1984), 347–371 | MR

[8] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[9] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[10] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[11] Chechkin G. A., “Ob asimptoticheskikh svoistvakh chastichno zakreplennoi membrany”, UMN, 44:4 (1989), 227

[12] Chechkin G. A., “O kraevykh zadachakh dlya ellipticheskogo uravneniya vtorogo poryadka s ostsilliruyuschimi granichnymi usloviyami”, Neklassicheskie differentsialnye uravneniya v chastnykh proizvodnykh, IM SOAN SSSR, Novosibirsk, 1988, 95–104 | MR

[13] Chechkin G. A., “Spektralnye svoistva ellipticheskoi zadachi s bystro ostsilliruyuschimi granichnymi usloviyami”, Kraevye zadachi dlya neklassicheskikh uravnenii v chastnykh proizvodnykh, IM SOAN SSSR, Novosibirsk, 1989, 197–200 | MR

[14] Chechkin G. A., “Usrednenie reshenii granichnykh zadach s bystro menyayuschimsya tipom granichnykh uslovii”, UMN, 46:6 (1991), 190–191 | MR

[15] Brillard A., Lobo M., Perez E., “Homogeneisation de Frontieres par Epi-convergence en Elasticite Lineare”, MMAN, 24:1 (1990), 5–26 | MR | Zbl

[16] Brillard A., Lobo M., Perez E., “Un Probleme d'Homogeneisation de Frontieres en Elasticite Lineare pour un Corps Cylindrique”, C. R. Acad. Sc. Paris, Serie II, 311 (1990), 15–20 | MR | Zbl

[17] Damlamian A., Li Ta-Tsien (Li Daqian), “Homogeneisation sur le Bord pour des Problemes Elliptiques”, C. R. Acad. Sc. Paris, Serie I, 299:17 (1984), 859–862 | MR | Zbl

[18] Damlamian A., Li Ta-Tsien (Li Daqian), “Boundary Homogenization for Elliptic Problems”, J. Math. pures et appl., 66 (1987), 351–361 | MR | Zbl

[19] Lobo M., Perez E., “Asymptotic Behaviour of an Elastic Body with a Surface Having Small Stuck Regions”, MMAN, 22:4 (1988), 609–624 | MR | Zbl

[20] Lobo M., Perez E., “Asymptotic Behaviour of the Vibrations of a Body Having Many Concentrated Masses Near the Boundary”, C. R. Acad. Sc. Paris, Serie II, 314 (1992), 13–18 | Zbl