On the existence of periodic solutions of semilinear elliptic equations
Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 167-178
Voir la notice de l'article provenant de la source Math-Net.Ru
Using a variational method, the existence is proved of a solution of the equation $-\Delta u=g(u)$ in $\mathbb{R}^{N+1}$, periodic with respect to one variable and localized with respect to the remaining variables.
@article{SM_1994_79_1_a10,
author = {Ya. Sh. Il'yasov},
title = {On the existence of periodic solutions of semilinear elliptic equations},
journal = {Sbornik. Mathematics},
pages = {167--178},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_79_1_a10/}
}
Ya. Sh. Il'yasov. On the existence of periodic solutions of semilinear elliptic equations. Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 167-178. http://geodesic.mathdoc.fr/item/SM_1994_79_1_a10/