On the existence of periodic solutions of semilinear elliptic equations
Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 167-178

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a variational method, the existence is proved of a solution of the equation $-\Delta u=g(u)$ in $\mathbb{R}^{N+1}$, periodic with respect to one variable and localized with respect to the remaining variables.
@article{SM_1994_79_1_a10,
     author = {Ya. Sh. Il'yasov},
     title = {On the existence of periodic solutions of semilinear elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {167--178},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_1_a10/}
}
TY  - JOUR
AU  - Ya. Sh. Il'yasov
TI  - On the existence of periodic solutions of semilinear elliptic equations
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 167
EP  - 178
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_1_a10/
LA  - en
ID  - SM_1994_79_1_a10
ER  - 
%0 Journal Article
%A Ya. Sh. Il'yasov
%T On the existence of periodic solutions of semilinear elliptic equations
%J Sbornik. Mathematics
%D 1994
%P 167-178
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_79_1_a10/
%G en
%F SM_1994_79_1_a10
Ya. Sh. Il'yasov. On the existence of periodic solutions of semilinear elliptic equations. Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 167-178. http://geodesic.mathdoc.fr/item/SM_1994_79_1_a10/