On the existence of periodic solutions of semilinear elliptic equations
Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 167-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a variational method, the existence is proved of a solution of the equation $-\Delta u=g(u)$ in $\mathbb{R}^{N+1}$, periodic with respect to one variable and localized with respect to the remaining variables.
@article{SM_1994_79_1_a10,
     author = {Ya. Sh. Il'yasov},
     title = {On the existence of periodic solutions of semilinear elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {167--178},
     year = {1994},
     volume = {79},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_79_1_a10/}
}
TY  - JOUR
AU  - Ya. Sh. Il'yasov
TI  - On the existence of periodic solutions of semilinear elliptic equations
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 167
EP  - 178
VL  - 79
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_79_1_a10/
LA  - en
ID  - SM_1994_79_1_a10
ER  - 
%0 Journal Article
%A Ya. Sh. Il'yasov
%T On the existence of periodic solutions of semilinear elliptic equations
%J Sbornik. Mathematics
%D 1994
%P 167-178
%V 79
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_79_1_a10/
%G en
%F SM_1994_79_1_a10
Ya. Sh. Il'yasov. On the existence of periodic solutions of semilinear elliptic equations. Sbornik. Mathematics, Tome 79 (1994) no. 1, pp. 167-178. http://geodesic.mathdoc.fr/item/SM_1994_79_1_a10/

[1] Alfimov G. I., Eleonsy V. M., Kulagin N. E., Lerman L. M., Silin V. P., “On existence of nontrivial solution for the equation $\Delta u - u + u^3=0$”, Physica D, 44 (1990), 168–177 | DOI | MR | Zbl

[2] Kaptsov O. V., “Novye resheniya dvumernykh statsionarnykh uravnenii Eilera”, Prikl. matem. i mekhanika, 54:3 (1990), 409–416 | MR

[3] Mikhailovskii A. B., Kudashev V. R., Lakhin B. P., Mikhailovskaya L. A., Smolyakov A. I., Shishkov S. Yu., “Tsepochki solitonov Rossbi i gradientnykh solitonov”, Pisma ZhETF, 40:7 (1984), 273–275

[4] Berestyski H., Lions P. L., “Nonlinear scalar field equations. I: Existence of a Ground State”, Arch. Rat. Mech. Anal., 82(4) (1983), 313–345 | MR

[5] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u + \lambda f(u) = 0 $”, DAN SSSR, 165:1 (1965), 36–39 | MR | Zbl

[6] Lions Zh.-L., Mazhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[7] Lions Zh.-L., Neodnorodnye granichnye resheniya nelineinykh kraevykh zadach, Mir 1971, M.

[8] Lieb E. H., “Existence and uniqueness of the minimizing solution of Shoquard's nonlinear equation”, Stud. in Appl. Math., 57 (1977), 93–105 | MR | Zbl

[9] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[10] Brezis H., Kato T., “Remarks on the Schrodinger operator with singular complex potentials”, J. Math. Pures Appl., 58 (1979), 137–151 | MR | Zbl

[11] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granits v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, IL, M., 1962