On linear and multiplicative relations
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 411-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theorem on the successive minima of lattices corresponding to the integer solutions of systems of linear equations is proved. As a corollary, theorems on the successive minima are obtained for the set of solutions of equations of the form $$ x_1\ln\alpha_1+\dots+x_n\ln\alpha_n=\ln\beta, \qquad x_1,\dots,x_n\in\mathbb{Z}, $$ for fixed $\alpha_1,\dots,\alpha_n$ in an algebraic number field $\mathbb{K}$ and for variable $\beta\in\mathbb{K}$ equal either to 1 or a root of unity.
@article{SM_1994_78_2_a8,
     author = {E. M. Matveev},
     title = {On linear and multiplicative relations},
     journal = {Sbornik. Mathematics},
     pages = {411--425},
     year = {1994},
     volume = {78},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a8/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - On linear and multiplicative relations
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 411
EP  - 425
VL  - 78
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a8/
LA  - en
ID  - SM_1994_78_2_a8
ER  - 
%0 Journal Article
%A E. M. Matveev
%T On linear and multiplicative relations
%J Sbornik. Mathematics
%D 1994
%P 411-425
%V 78
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_78_2_a8/
%G en
%F SM_1994_78_2_a8
E. M. Matveev. On linear and multiplicative relations. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 411-425. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a8/

[1] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[2] Vaaler J. D., “A geometric inequality with application to linear forms”, Pacific J. Math., 83:2 (1979), 543–553 | MR | Zbl

[3] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[4] Buchmann J., Pohst M., “Computing a lattice basis from a system of generating vectors”, Lect. Notes Comput. Sci., 378, 1989, 54–63 | MR

[5] Masser D. W., “Linear relations on algebraic groups”, New Adw. Transcendence Theory, Symp. Transcendent. Number Theory (Durham, July, 1986), Cambridge Univ. Press, 248–262 | MR | Zbl

[6] Waldschmidt M., “A lower bound for linear forms in logarithms”, Acta arithm., 37 (1980), 257–283 | MR | Zbl

[7] Bombiery E., Vaaler J. D., “On Siegel's lemma”, Invent. Math., 73 (1983), 11–32 | DOI | MR

[8] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[9] Dobrowolski E., “On a question of Lehmer and the number of irreducible factors of a polinomial”, Acta arithm., 34:4 (1979), 391–401 | MR | Zbl

[10] Smyth C. J., “On tha product of conjugates outside the unit circle of an algebraic integer”, Bull. London Math. Soc., 1971, no. 3, 169–175 | DOI | MR | Zbl

[11] Matveev E. M., “O razmere tselykh algebraicheskikh chisel”, Matem. zametki, 49:4 (1991), 152–154 | MR

[12] Boyd D. W., “Reciprocal polynomials having small measure, II”, Math. Comput., 53:187 (1989), 355–357 | DOI | MR | Zbl

[13] Loxton J. H., van der Poorten A. J., “Multiplicative dependence in number fields”, Acta arithm., 42 (1983), 291–302 | MR