On linear and multiplicative relations
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 411-425

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on the successive minima of lattices corresponding to the integer solutions of systems of linear equations is proved. As a corollary, theorems on the successive minima are obtained for the set of solutions of equations of the form $$ x_1\ln\alpha_1+\dots+x_n\ln\alpha_n=\ln\beta, \qquad x_1,\dots,x_n\in\mathbb{Z}, $$ for fixed $\alpha_1,\dots,\alpha_n$ in an algebraic number field $\mathbb{K}$ and for variable $\beta\in\mathbb{K}$ equal either to 1 or a root of unity.
@article{SM_1994_78_2_a8,
     author = {E. M. Matveev},
     title = {On linear and multiplicative relations},
     journal = {Sbornik. Mathematics},
     pages = {411--425},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a8/}
}
TY  - JOUR
AU  - E. M. Matveev
TI  - On linear and multiplicative relations
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 411
EP  - 425
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a8/
LA  - en
ID  - SM_1994_78_2_a8
ER  - 
%0 Journal Article
%A E. M. Matveev
%T On linear and multiplicative relations
%J Sbornik. Mathematics
%D 1994
%P 411-425
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_2_a8/
%G en
%F SM_1994_78_2_a8
E. M. Matveev. On linear and multiplicative relations. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 411-425. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a8/