On linear and multiplicative relations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 411-425
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A theorem on the successive minima of lattices corresponding to the integer solutions of systems of linear equations is proved. As a corollary, theorems on the successive minima are obtained for the set of solutions of equations of the form
$$
x_1\ln\alpha_1+\dots+x_n\ln\alpha_n=\ln\beta, \qquad x_1,\dots,x_n\in\mathbb{Z},
$$
for fixed $\alpha_1,\dots,\alpha_n$ in an algebraic number field $\mathbb{K}$ and for variable $\beta\in\mathbb{K}$ equal either to 1 or a root of unity.
			
            
            
            
          
        
      @article{SM_1994_78_2_a8,
     author = {E. M. Matveev},
     title = {On linear and multiplicative relations},
     journal = {Sbornik. Mathematics},
     pages = {411--425},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a8/}
}
                      
                      
                    E. M. Matveev. On linear and multiplicative relations. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 411-425. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a8/
