Bifurcation of invariant tori of parabolic systems with small diffusion
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 367-378

Voir la notice de l'article provenant de la source Math-Net.Ru

Two theorems are proved on the existence, asymptotics, and stability of smooth invariant tori bifurcating from the zero equilibrium state and associated with parabolic systems with small diffusion under Neumann boundary conditions.
@article{SM_1994_78_2_a5,
     author = {Yu. S. Kolesov},
     title = {Bifurcation of invariant tori of parabolic systems with small diffusion},
     journal = {Sbornik. Mathematics},
     pages = {367--378},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a5/}
}
TY  - JOUR
AU  - Yu. S. Kolesov
TI  - Bifurcation of invariant tori of parabolic systems with small diffusion
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 367
EP  - 378
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a5/
LA  - en
ID  - SM_1994_78_2_a5
ER  - 
%0 Journal Article
%A Yu. S. Kolesov
%T Bifurcation of invariant tori of parabolic systems with small diffusion
%J Sbornik. Mathematics
%D 1994
%P 367-378
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_2_a5/
%G en
%F SM_1994_78_2_a5
Yu. S. Kolesov. Bifurcation of invariant tori of parabolic systems with small diffusion. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 367-378. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a5/