@article{SM_1994_78_2_a4,
author = {A. Tungatarov},
title = {On the theory of {the~Carleman{\textendash}Vekua} equation with a~singular point},
journal = {Sbornik. Mathematics},
pages = {357--365},
year = {1994},
volume = {78},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a4/}
}
A. Tungatarov. On the theory of the Carleman–Vekua equation with a singular point. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 357-365. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a4/
[1] Mikhailov L. G., Novyi klass osobykh integralnykh uravnenii i ego prilozheniya k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Irfon, Dushanbe, 1963
[2] Usmanov Z. D., “Beskonechno malye izgibaniya poverkhnostei polozhitelnoi krivizny s tochkoi uploscheniya”, Differential Geometry, Banach Center Publications, 12, Warsaw, 1984, 241–272 | MR | Zbl
[3] Usmanov Z. D., “O beskonechno malykh izgibaniyakh poverkhnostei polozhitelnoi krivizny s izolirovannoi tochkoi uploscheniya”, Matem. sb., 83 (125):4 (12) (1970), 596–615 | MR | Zbl
[4] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR
[5] Usmanov Z. D., “Ob odnom klasse obobschennykh sistem Koshi–Rimana s singulyarnoi tochkoi”, Sib. matem. zhurnal., 14:5 (1973), 1076–1087 | MR | Zbl
[6] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977 | MR
[7] Bitsadze A. V., Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984 | MR