Behavior of solutions of a nonlinear variational problem in a neighborhood of singular points of the boundary and at infinity
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 333-355 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the functions realizing a minimum for the functional $$ \int_\Omega F(x,u,Du,\dots,D^mu)\,dx, $$ where $F$ has power order of growth with respect to $D^mu$. The rate of decrease is established for the $m$th-order derivatives of an extremal in the integral metric in a neighborhood of a singularity on the boundary of power cusp type and at infinity in domains having outside some ball the structure of a cylinder or layer, and also domains constricting or expanding at infinity in a power manner. Estimates are obtained under the assumption that homogeneous Dirichlet conditions or Neumann conditions are given on the indicated part of the boundary. The estimates depend on the geometry of the domain. The results obtained are new also for a broad class of nonlinear elliptic equations.
@article{SM_1994_78_2_a3,
     author = {G. V. Grishina},
     title = {Behavior of solutions of a~nonlinear variational problem in a~neighborhood of singular points of the~boundary and at infinity},
     journal = {Sbornik. Mathematics},
     pages = {333--355},
     year = {1994},
     volume = {78},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a3/}
}
TY  - JOUR
AU  - G. V. Grishina
TI  - Behavior of solutions of a nonlinear variational problem in a neighborhood of singular points of the boundary and at infinity
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 333
EP  - 355
VL  - 78
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a3/
LA  - en
ID  - SM_1994_78_2_a3
ER  - 
%0 Journal Article
%A G. V. Grishina
%T Behavior of solutions of a nonlinear variational problem in a neighborhood of singular points of the boundary and at infinity
%J Sbornik. Mathematics
%D 1994
%P 333-355
%V 78
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_78_2_a3/
%G en
%F SM_1994_78_2_a3
G. V. Grishina. Behavior of solutions of a nonlinear variational problem in a neighborhood of singular points of the boundary and at infinity. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 333-355. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a3/

[1] Oleinik O. A., Iosifyan G. A., “O povedenii na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnoi granitsei”, Matem. sb., 112(154) (1980), 588–610 | MR | Zbl

[2] Oleinik O. A., Iosifyan G. A., Tavkhelidze I. N., “Ob asimptotike resheniya bigarmonicheskogo uravneniya v okrestnosti neregulyarnykh tochek granitsy i na beskonechnosti”, Tr. MMO, 42, URSS, M., 1981, 160–175 | MR | Zbl

[3] Kondratev V. A., Oleinik O. A., Kopachek I., “Ob asimptoticheskikh svoistvakh reshenii bigarmonicheskogo uravneniya”, Differents. uravneniya, 17:10 (1981), 1886–1899 | MR | Zbl

[4] Kondratev V. A., Oleinik O. A., “O povedenii obobschennykh reshenii zadachi Dirikhle dlya ellipticheskikh uravnenii vysokogo poryadka v okrestnosti granitsy”, Kraevye zadachi matem. fiziki i smezhnye voprosy teorii funktsii, Zap. nauch. seminarov LOMI, 115, no. 14, Nauka, L., 1982, 114–125 | MR | Zbl

[5] Tavkhelidze I. N., “Analog printsipa Sen-Venana dlya poligarmonicheskogo uravneniya i ego prilozheniya”, Matem. sb., 118(160) (1982), 236–251 | MR | Zbl

[6] Mazya V. G., Plamenevskii B. A., “Ob asimptotike resheniya zadachi Dirikhle vblizi izolirovannoi osobennosti granitsy”, Vestn. LGU. Ser. matem., 1977, no. 3, 60–66 | MR | Zbl

[7] Tarba L. A., “O svoistvakh reshenii ellipticheskogo uravneniya vysokogo poryadka v neogranichennykh oblastyakh”, Soobsch. AN GSSR, 100:1 (1980), 37–40 | MR | Zbl

[8] Tarba L. A., “O svoistvakh reshenii ellipticheskogo uravneniya vysokogo poryadka v oblastyakh s nekompaktnoi granitsei”, Vestn. MGU. Ser. matematika, mekhanika, 1981, no. 1, 10–14 | MR | Zbl

[9] Shishkov A. E., “Povedenie obobschennykh reshenii zadachi Dirikhle dlya kvazilineinykh divergentnykh ellipticheskikh uravnenii vysokogo poryadka v okrestnosti granitsy”, Differents. uravneniya, 23:2 (1987), 308–320 | MR | Zbl

[10] Shishkov A. E., “Povedenie zadachi Dirikhle dlya kvazilineinykh divergentnykh ellipticheskikh uravnenii vysokogo poryadka v neogranichennykh oblastyakh”, Sib. matem. zhurn., 28:2 (1987), 308–320 | MR

[11] Shishkov A. E., “Kvazilineinye divergentnye ellipticheskie uravneniya v neogranichennykh oblastyakh”, Differents. uravneniya, 24:8 (1988), 1410–1423 | MR | Zbl

[12] Grishina G. V., “O povedenii v okrestnosti neregulyarnykh tochek granitsy reshenii nelineinykh differentsialnykh uravnenii”, UMN, 41:4 (1986), 201–202

[13] Grishina G. V., “O gladkosti i povedenii v okrestnosti osoboi tochki granitsy resheniya nelineinoi ellipticheskoi zadachi Dirikhle”, Vestn. MGU. Ser. matematika, mekhanika, 1986, no. 4, 84–87 | Zbl

[14] Morrey C. B., “Multiple integral problems in the calculus of variations and relations topics”, Univ. California Publ. in Mathematics, 1 (1943), 1–130 | MR | Zbl

[15] Morrey C. B., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966 | MR | Zbl

[16] Milyukov V. M., “Ob asimptoticheskikh svoistvakh subreshenii kvazilineinykh uravnenii ellipticheskogo tipa i otobrazhenii s ogranichennym iskazheniem”, Matem. sb., 111(153) (1980), 42–65

[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[18] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[19] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR