Integral operators of potential type and their boundary properties
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 313-332

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of integral operators of the form $$ (Au)(x)= \int_{\partial D}K(x,x-y)u(y)\,dy, \quad x\in D, $$ $D$ a domain in $\mathbb{R}^{m+1}$, $m\ge1$, and of singular integral operators of the form $$ (Bu)(x_0)=\int_{\partial D}K(x_0,x_0-y)u(y)\,dy, \quad x_0\in D, $$ are studied in the particular case when $\partial D$ lies in the hyperplane $\mathbb{R}^m\times\{0\}$. General methods are used to obtain estimates of the modulus of continuity of the operator in terms of the continuity of the density, partical moduli of continuity of the characteristic $f(x,\theta)=|x-y|^mK(x,x-y)$, $\theta=(y-x)|y-x|^{-1}$, and also characteristics describing the smoothness of $\partial D$ or its edge (it is assumed that the kernel $~K(x,w)$ is homogeneous of degree $(-m)$ with respect to $w$).
@article{SM_1994_78_2_a2,
     author = {R. K. Seifullaev},
     title = {Integral operators of potential type and their boundary properties},
     journal = {Sbornik. Mathematics},
     pages = {313--332},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a2/}
}
TY  - JOUR
AU  - R. K. Seifullaev
TI  - Integral operators of potential type and their boundary properties
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 313
EP  - 332
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a2/
LA  - en
ID  - SM_1994_78_2_a2
ER  - 
%0 Journal Article
%A R. K. Seifullaev
%T Integral operators of potential type and their boundary properties
%J Sbornik. Mathematics
%D 1994
%P 313-332
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_2_a2/
%G en
%F SM_1994_78_2_a2
R. K. Seifullaev. Integral operators of potential type and their boundary properties. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 313-332. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a2/