Of the first mixed problem for the~system of Navier--Stokes equations in domains with noncompact boundaries
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 507-524
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This article contains an investigation of the behavior as $t\to\infty$ of a solution of the mixed problem with Dirichlet conditions on the boundary for the system of Navier–Stokes equations in an unbounded three-dimensional domain. An estimate, determined by the geometry of the domain, is proved for the rate of decay of a solution for a compactly supported initial function satisfying a certain smallness condition. This estimate coincides in form with the sharp estimate obtained earlier by the author for the solution of the first mixed problem for the heat equation.
			
            
            
            
          
        
      @article{SM_1994_78_2_a13,
     author = {F. Kh. Mukminov},
     title = {Of the first mixed problem for the~system of {Navier--Stokes} equations in domains with noncompact boundaries},
     journal = {Sbornik. Mathematics},
     pages = {507--524},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/}
}
                      
                      
                    TY - JOUR AU - F. Kh. Mukminov TI - Of the first mixed problem for the~system of Navier--Stokes equations in domains with noncompact boundaries JO - Sbornik. Mathematics PY - 1994 SP - 507 EP - 524 VL - 78 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/ LA - en ID - SM_1994_78_2_a13 ER -
F. Kh. Mukminov. Of the first mixed problem for the~system of Navier--Stokes equations in domains with noncompact boundaries. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 507-524. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/
