Of the first mixed problem for the system of Navier–Stokes equations in domains with noncompact boundaries
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 507-524 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article contains an investigation of the behavior as $t\to\infty$ of a solution of the mixed problem with Dirichlet conditions on the boundary for the system of Navier–Stokes equations in an unbounded three-dimensional domain. An estimate, determined by the geometry of the domain, is proved for the rate of decay of a solution for a compactly supported initial function satisfying a certain smallness condition. This estimate coincides in form with the sharp estimate obtained earlier by the author for the solution of the first mixed problem for the heat equation.
@article{SM_1994_78_2_a13,
     author = {F. Kh. Mukminov},
     title = {Of the first mixed problem for the~system of {Navier{\textendash}Stokes} equations in domains with noncompact boundaries},
     journal = {Sbornik. Mathematics},
     pages = {507--524},
     year = {1994},
     volume = {78},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - Of the first mixed problem for the system of Navier–Stokes equations in domains with noncompact boundaries
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 507
EP  - 524
VL  - 78
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/
LA  - en
ID  - SM_1994_78_2_a13
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T Of the first mixed problem for the system of Navier–Stokes equations in domains with noncompact boundaries
%J Sbornik. Mathematics
%D 1994
%P 507-524
%V 78
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/
%G en
%F SM_1994_78_2_a13
F. Kh. Mukminov. Of the first mixed problem for the system of Navier–Stokes equations in domains with noncompact boundaries. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 507-524. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/

[1] Beirao da Veiga H., “Existance and asymptotic behaviour for strong solutions of the Navier–Stokes equations in whole space”, Indiana Univ. Math. J., 36 (1987), 149–166 | DOI | MR | Zbl

[2] Bogovskii M. E., “Reshenie nekotorykh zadach vektornogo analiza, svyazannykh s operatorami div i grad”, Trudy seminara S. L. Soboleva, no. 1, Nauka, Novosibirsk, 1980, 5–40 | MR

[3] Bogovskii M. E., Maslennikova V. N., “O sistemakh Soboleva s tremya prostranstvennymi peremennymi”, Trudy seminara S. L. Soboleva, 2, Nauka, Novosibirsk, 1976, 49–69

[4] Borchers S., Miyakawa T., “$L_2$-decay for the Navier–Stokes flow in half spaces”, Math. Annalen, 282 (1988), 139–155 | DOI | MR | Zbl

[5] Borchers S., Miyakawa T., “Algebraic $L_2$ decay for Navier–Stokes flows in exterior domains”, Acta Math., 165 (1990), 189–227 | DOI | MR | Zbl

[6] Borchers W., Sohr H., “The equations $\operatorname {div}\mathbf u=f$ and $\operatorname {rot}\mathbf v=g$ with homogeneous Dirichlet boundary condition”, Hokkaido Math. J., 19 (1990), 67–87 | MR | Zbl

[7] Galdi G., Maremonti P., “Monotonic decreasing and asymptotic behaviour of the kinetic energy for weak solutions of the Navier–Stokes equations in exterior domains”, Arch. Rational Mech. Anal., 94 (1986), 253–266 | DOI | MR | Zbl

[8] Glushko A. V., “Asimptotika po vremeni resheniya zadachi Koshi dlya linearizovannoi sistemy uravnenii Nave–Stoksa s nulevoi pravoi chastyu”, Trudy seminara S. L. Soboleva, no. 1, Nauka, Novosibirsk, 1981, 5–33 | MR

[9] Glushko A. V., Maslennikova V. N., “Teoremy o lokalizatsii tauberovskogo tipa i skorost zatukhaniya resheniya sistemy gidrodinamiki vyazkoi szhimaemoi zhidkosti”, Tr. MIAN, 181, Nauka, M., 1988, 156–186 | MR | Zbl

[10] Guschin A. K., “O ravnomernoi stabilizatsii reshenii vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 119 (161) (1982), 451–508 | MR

[11] Hopf E., “Uber die Aufangswertaufgabe fur die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | MR | Zbl

[12] Heywood J. G., “On uniqueness questions in the theory of viscous flow”, Acta Math., 138 (1976), 61–102 | DOI | MR

[13] Heywood J. G., “The Navier–Stokes equations: On the existance, regularity and decay of solutions”, Indiana Univ. Math. J., 29 (1980), 639–681 | DOI | MR | Zbl

[14] Kajikiya R., Miyakawa T., “On $L_2$ decay of weak solutions of the Navier–Stokes equations in $R_n$”, Math. Z., 192 (1986), 135–148 | DOI | MR | Zbl

[15] Kato T., “Strong $L^p$-solutions of the Navier–Stokes equations in $R^m$, with applications to weak solutions”, Math. Z., 187 (1984), 471–480 | DOI | MR | Zbl

[16] Kiselev A. A., Ladyzhenskaya O. A., “O suschestvovanii i edinstvennosti resheniya nestatsionarnoi zadachi dlya vyazkoi neszhimaemoi zhidkosti”, Izv. AN SSSR. Ser. matem., 21 (1957), 655–680 | MR

[17] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[18] Ladyzhenskaya O. A., Solonnikov V. A., “O nachalno-kraevoi zadache dlya linearizovannoi sistemy uravnenii Nave–Stoksa v oblastyakh s nekompaktnymi granitsami”, Tr. MIAN, 159, Nauka, M., 1983, 37–40 | MR | Zbl

[19] Ladyzhenskaya O. A., Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave–Stoksa”, Zapiski nauch. sem. LOMI, 59, Nauka, L., 1976, 81–116 | MR | Zbl

[20] Ladyzhenskaya O. A, Solonnikov V. A., “O nakhozhdenii kraevykh zadach dlya statsionarnykh uravnenii Stoksa i Nave–Stoksa, imeyuschikh neogranichennyi integral Dirikhle”, Zapiski nauch. sem. LOMI, 96, Nauka, L., 1980, 117–160 | MR | Zbl

[21] Leray J., “Sur le movement d'un liquids visqueux emplissant l'espase”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[22] Maremonty P., “On the asymptotic behaviour of the $L^2$ norm of suitable weak solutions to the Navier–Stokes equations in three-dimensional exterior domains”, Comm. Math. Phys., 118 (1988), 385–400 | DOI | MR

[23] Masuda K., “On the stability of incompressibble viscous fluid motions past objects”, J. Math. Soc. Japan, 27 (1975), 294–327 | DOI | MR | Zbl

[24] Masuda K., “Weak solutions of the Navier–Stokes equations”, Tohoku Math. J., 37 (1984), 623–646 | DOI | MR

[25] Maslennikova V. N., “O skorosti zatukhaniya vikhrya v vyazkoi zhidkosti”, Tr. MIAN, 126, Nauka, M., 1973, 46–72 | MR | Zbl

[26] Maslennikova V. N., “O skorosti ubyvaniya pri bolshom vremeni resheniya sistemy Soboleva s uchetom vyazkosti”, Matem. sb., 92 (134) (1973), 589–610 | MR | Zbl

[27] Miyakawa T., Sohr H., “On energy inequality, smoothness and large time behaviour in $L^2$ for weak solutions of the Navier–Stokes equations in exterior domains”, Math. Z., 199 (1988), 455–478 | DOI | MR | Zbl

[28] Mukminov F. Kh., “Stabilizatsiya reshenii pervoi smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Matem. sb., 111 (153) (1980), 503–521 | MR | Zbl

[29] Mukminov F. Kh., “Ob ubyvanii resheniya pervoi smeshannoi zadachi dlya linearizovannoi sistemy uravnenii Nave–Stoksa v oblasti s nekompaktnoi granitsei”, Matem. sb., 183:10 (1992), 123–144 | Zbl

[30] Petunin I. M., “Ob asimptoticheskoi otsenke resheniya pervoi kraevoi zadachi v poluprostranstve dlya uravnenii dvizheniya vyazkoi vraschayuscheisya zhidkosti”, Differentsialnye uravneniya i funktsionalnyi analiz, UDN, M., 1983, 64–85 | MR

[31] Schonbek M. E., “$L_2$ decay for weak solutions of the Navier–Stokes equations”, Arch. Ration. Mech. and Anal., 88 (1985), 209–222 | DOI | MR | Zbl

[32] Schonbek M. E., “Large time behavior of solutions to the Navier–Stokes equations”, Comm. Partial Differential Equations, 11 (1986), 733–763 | DOI | MR | Zbl

[33] Serrin J., “The initial value problem for the Navier–Stokes equations”, Nonlinear Problems, ed. R. E. Langer, The University of Wisconsin Press, Madison, 1963 | MR

[34] Solonnikov V. A., Schadilov V. E., “Ob odnoi kraevoi zadache dlya statsionarnoi sistemy uravnenii Nave–Stoksa”, Tr. MIAN, 125, Nauka, M., 1973, 196–210 | MR | Zbl

[35] Wiegner M., “Decay results for weak solutions of the Navier–Stokes equations”, J. London Math. Soc., 35 (1987), 303–313 | DOI | MR | Zbl