Of the first mixed problem for the~system of Navier--Stokes equations in domains with noncompact boundaries
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 507-524

Voir la notice de l'article provenant de la source Math-Net.Ru

This article contains an investigation of the behavior as $t\to\infty$ of a solution of the mixed problem with Dirichlet conditions on the boundary for the system of Navier–Stokes equations in an unbounded three-dimensional domain. An estimate, determined by the geometry of the domain, is proved for the rate of decay of a solution for a compactly supported initial function satisfying a certain smallness condition. This estimate coincides in form with the sharp estimate obtained earlier by the author for the solution of the first mixed problem for the heat equation.
@article{SM_1994_78_2_a13,
     author = {F. Kh. Mukminov},
     title = {Of the first mixed problem for the~system of {Navier--Stokes} equations in domains with noncompact boundaries},
     journal = {Sbornik. Mathematics},
     pages = {507--524},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - Of the first mixed problem for the~system of Navier--Stokes equations in domains with noncompact boundaries
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 507
EP  - 524
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/
LA  - en
ID  - SM_1994_78_2_a13
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T Of the first mixed problem for the~system of Navier--Stokes equations in domains with noncompact boundaries
%J Sbornik. Mathematics
%D 1994
%P 507-524
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/
%G en
%F SM_1994_78_2_a13
F. Kh. Mukminov. Of the first mixed problem for the~system of Navier--Stokes equations in domains with noncompact boundaries. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 507-524. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a13/