Integral invariant lattices in Lie algebras of type $A_{p^m-1}$
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 447-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integral invariant lattices associated with the standard orthogonal decomposition of a Lie algebra of type $A_{p^m-1}$ are described up to similarity. Duality in the class of invariant lattices is studied. Even unimodular root-free lattices of dimension $p^{2m}-1$ are distinguished.
@article{SM_1994_78_2_a11,
     author = {K. S. Abdukhalikov},
     title = {Integral invariant lattices in {Lie} algebras of type $A_{p^m-1}$},
     journal = {Sbornik. Mathematics},
     pages = {447--478},
     year = {1994},
     volume = {78},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a11/}
}
TY  - JOUR
AU  - K. S. Abdukhalikov
TI  - Integral invariant lattices in Lie algebras of type $A_{p^m-1}$
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 447
EP  - 478
VL  - 78
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a11/
LA  - en
ID  - SM_1994_78_2_a11
ER  - 
%0 Journal Article
%A K. S. Abdukhalikov
%T Integral invariant lattices in Lie algebras of type $A_{p^m-1}$
%J Sbornik. Mathematics
%D 1994
%P 447-478
%V 78
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_78_2_a11/
%G en
%F SM_1994_78_2_a11
K. S. Abdukhalikov. Integral invariant lattices in Lie algebras of type $A_{p^m-1}$. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 447-478. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a11/

[1] Abdukhalikov K. S., “Ob invariantnykh reshetkakh v algebrakh Li tipa $A_{q-1}$”, UMN, 1988, no. 1, 187–188 | MR

[2] Abdukhalikov K. S., “O gruppe avtomorfizmov ortogonalnogo razlozheniya algebry Li tipa $A_{2^{m}-1}$”, Izvestiya vuzov. Matematika, 1991, no. 10, 11–14 | MR | Zbl

[3] Algebraicheskaya teoriya chisel, eds. Dzh. Kassels, A. Frelikh, Mir, M., 1969 | MR

[4] Bondal A. I., Kostrikin A. I., Fam Khyu Tep, “Invariantnye reshetki, reshetka Licha i ee chetnye unimodulyarnye analogi v algebrakh Li tipa $A_{p-1}$”, Matem. sb., 130 (172):4(8) (1986), 435–464 | MR | Zbl

[5] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[6] Kash F., Moduli i koltsa, Mir, M., 1981 | MR

[7] Kostrikin A. I., Kostrikin I. A., Ufnarovskii V. A., “Ortogonalnye razlozheniya prostykh algebr Li (tip $A_{n}$)”, Tr. MIAN, 158, Nauka, M., 1981, 105–120 | MR | Zbl

[8] Kostrikin A. I., Kostrikin I. A., Ufnarovskii V. A., Razlozheniya v prostykh algebrakh Li, preprint, Kishinev, 1983

[9] Kostrikin A. I., Kostrikin I. A., Ufnarovskii V. A., “Invariantnye reshetki tipa $G_{2}$ i gruppy avtomorfizmov”, Tr. MIAN, 165, Nauka, M., 1984, 79–97 | MR | Zbl

[10] Kostrikin A. I., Fam Khyu Tep, “Klassifikatsiya neprivodimykh ortogonalnykh razlozhenii prostykh algebr Li tipa $A_{n}$”, Algebra i analiz, 3:3 (1991), 86–109 | MR

[11] Ivanov D. N., “Ortogonalnye razlozheniya algebr Li tipa $A_{p^{n}-1}$ i $D_{n}$ s konechnym chislom klassov podobnykh invariantnykh podreshetok”, Vestnik MGU. Ser. 1. Matem. mekh., 2 (1989), 40–43 | Zbl

[12] Leng S., Algebra, Mir, M., 1968 | MR

[13] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1985

[14] Fam Khyu Tep, “Teorema reduktsii dlya invariantnykh reshetok tipa $A_{n}$”, DAN SSSR, 319:1 (1991), 78–82

[15] Fam Khyu Tep, Ortogonalnye razlozheniya i tselochislennye reshetki, Dis. ...dokt. fiz.-matem. nauk, MGU, M., 1991

[16] Conway J. H., “A group of order 8315553613086720000”, Bull. London Math. Soc., 1 (1969), 79–88 | DOI | MR | Zbl

[17] Thompson J. G., “A conjugacy theorem for $E_{8}$”, J. Algebra, 2 (1976), 525–530 | DOI | MR