Cycle types of linear substitutions over finite commutative rings
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 283-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of describing the lengths of the independent cycles in the indicated substitution reduces to the case where the ring and characteristic polynomial of the corresponding matrix are primary. The concept of a distinguished polynomial over a primary (local) ring $R$ is introduced and studied. These polynomials are used to obtain formulas for the cycle types of linear substitutions that generalize known formulas for the case where $R$ is a field. If $R$ is a principal ideal ring, the formulas are practically computable. In the case where $R$ is a Galois ring, there are given a complete description of the linear substitutions of maximal order and an algorithm for enumerating the cycles in such substitutions. Estimates of the exponents of the full linear group over a local ring and its congruence subgroup are given.
@article{SM_1994_78_2_a1,
     author = {A. A. Nechaev},
     title = {Cycle types of linear substitutions over finite commutative rings},
     journal = {Sbornik. Mathematics},
     pages = {283--311},
     year = {1994},
     volume = {78},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a1/}
}
TY  - JOUR
AU  - A. A. Nechaev
TI  - Cycle types of linear substitutions over finite commutative rings
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 283
EP  - 311
VL  - 78
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a1/
LA  - en
ID  - SM_1994_78_2_a1
ER  - 
%0 Journal Article
%A A. A. Nechaev
%T Cycle types of linear substitutions over finite commutative rings
%J Sbornik. Mathematics
%D 1994
%P 283-311
%V 78
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_78_2_a1/
%G en
%F SM_1994_78_2_a1
A. A. Nechaev. Cycle types of linear substitutions over finite commutative rings. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 283-311. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a1/

[1] Nechaev V. I., “Lineinye rekurrentnye posledovatelnosti”, Uch. zap. MGPI im. V. I. Lenina, 375 (1971), 103–123

[2] Carmichael R. D., “On sequences of integers defined by recurrence relations”, Quart. J. Math., 48 (1920), 343–372

[3] Engstrom H. T., “On sequences defined by linear recurrence relations”, Trans. Amer. Math. Soc., 33 (1931), 210–218 | DOI | MR | Zbl

[4] Ward M., “The arithmetical theory of linear recurring sequences”, Trans. Amer. Math. Soc., 35 (1933), 600–628 | DOI | MR | Zbl

[5] Hall M., “An isomorphism between linear recurring sequences and algebraic rings”, Trans. Amer. Math. Soc., 44 (1938), 196–218 | DOI | MR | Zbl

[6] Zierler N., “Linear Recurring Sequences”, J. Soc. Industr. and Appl. Math., 7 (1959), 31–48 | DOI | MR

[7] Bollman D. A., “Some periodicity properties of transformations on vector spaces over residue class rings”, J. Soc. Industr. and Appl. Math., 13 (1965), 902–912 | DOI | MR | Zbl

[8] Gill A., Linear Sequential Circuits, McCraw-Hill, N.Y., 1966 | MR

[9] Lidl R., Niederreiter H., Finite fields, Addison-Wesley Publ. Comp., 1983 | MR | Zbl

[10] Eichenauer-Herrman J., Crothe H., Lehn J., “On the Period Length of Pseudorandom Vector Sequences Generated by Matrix Generators”, Math. Comput., S2:185 (1989), 145–148 | MR

[11] Macdonald B. R., Finite rings with identity, N.Y., 1974

[12] Nechaev A. A., “O podobii matrits nad kommutativnym lokalnym artinovym koltsom”, Tr. sem. im. I. G. Petrovskogo, 9, Izd-vo Mosk. un-ta, M., 1983, 81–101 | MR | Zbl

[13] Suprunenko D. A., Gruppy matrits, Nauka, M., 1972 | MR

[14] Atiyah M. F., Macdonald I. G., Introduction to Commutative algebra, Addison-Wesley Publ. Comp., Mass., 1969 | MR | Zbl

[15] Nechaev A. A., “Konechnye koltsa glavnykh idealov”, Matem. sb., 91(133):3(7) (1973), 350–366 | MR | Zbl

[16] Dzhekobson N., Teoriya kolets, GIIL, M., 1947

[17] Raghavendran R., “A class of finite rings”, Composito Math., 22 (1970), 49–57 | MR | Zbl