Norms of Dirichlet kernels and some other trigonometric polynomials in $L_p$-spaces
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 267-282
Voir la notice de l'article provenant de la source Math-Net.Ru
The following problem is considered. Let
$\mathbf{a}=\{a_{\mathbf{n}}\}_{\mathbf{n}=1}^{\mathbf{M}}=\{a_{n_1,\dots,n_m}\}_{n_1,\dots,n_m=1}^{M_1,\dots,M_m}$
be a finite $m$-fold sequence of nonnegative numbers such that if $\mathbf{n}\ge\mathbf{k}$ then $a_{\mathbf{n}}\le a_{\mathbf{k}}$, and
$Q(\mathbf{x})=\sum_{\mathbf{n}=1}^{\mathbf{M}}a_{\mathbf{n}}e^{i\mathbf{nx}}$. The purpose of the work is to give best possible upper estimates of the norms $\|Q(\mathbf x)\|_p$ and $\|Q(\mathbf x)\|_{\mathbf{\delta},p}$ with $\boldsymbol\delta>0$ in terms of the coefficients $\{a_{\mathbf{n}}\}$. The Dirichlet kernels $D_U(\mathbf{x})=\sum_{\mathbf{n}\in U}e^{i\mathbf{nx}}$ with $U\in A_1$ present a particular case of $Q(\mathbf x)$.
@article{SM_1994_78_2_a0,
author = {M. I. Dyachenko},
title = {Norms of {Dirichlet} kernels and some other trigonometric polynomials in $L_p$-spaces},
journal = {Sbornik. Mathematics},
pages = {267--282},
publisher = {mathdoc},
volume = {78},
number = {2},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a0/}
}
M. I. Dyachenko. Norms of Dirichlet kernels and some other trigonometric polynomials in $L_p$-spaces. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 267-282. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a0/