Norms of Dirichlet kernels and some other trigonometric polynomials in $L_p$-spaces
Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 267-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following problem is considered. Let $\mathbf{a}=\{a_{\mathbf{n}}\}_{\mathbf{n}=1}^{\mathbf{M}}=\{a_{n_1,\dots,n_m}\}_{n_1,\dots,n_m=1}^{M_1,\dots,M_m}$ be a finite $m$-fold sequence of nonnegative numbers such that if $\mathbf{n}\ge\mathbf{k}$ then $a_{\mathbf{n}}\le a_{\mathbf{k}}$, and $Q(\mathbf{x})=\sum_{\mathbf{n}=1}^{\mathbf{M}}a_{\mathbf{n}}e^{i\mathbf{nx}}$. The purpose of the work is to give best possible upper estimates of the norms $\|Q(\mathbf x)\|_p$ and $\|Q(\mathbf x)\|_{\mathbf{\delta},p}$ with $\boldsymbol\delta>0$ in terms of the coefficients $\{a_{\mathbf{n}}\}$. The Dirichlet kernels $D_U(\mathbf{x})=\sum_{\mathbf{n}\in U}e^{i\mathbf{nx}}$ with $U\in A_1$ present a particular case of $Q(\mathbf x)$.
@article{SM_1994_78_2_a0,
     author = {M. I. Dyachenko},
     title = {Norms of {Dirichlet} kernels and some other trigonometric polynomials in $L_p$-spaces},
     journal = {Sbornik. Mathematics},
     pages = {267--282},
     year = {1994},
     volume = {78},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_2_a0/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - Norms of Dirichlet kernels and some other trigonometric polynomials in $L_p$-spaces
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 267
EP  - 282
VL  - 78
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_2_a0/
LA  - en
ID  - SM_1994_78_2_a0
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T Norms of Dirichlet kernels and some other trigonometric polynomials in $L_p$-spaces
%J Sbornik. Mathematics
%D 1994
%P 267-282
%V 78
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_78_2_a0/
%G en
%F SM_1994_78_2_a0
M. I. Dyachenko. Norms of Dirichlet kernels and some other trigonometric polynomials in $L_p$-spaces. Sbornik. Mathematics, Tome 78 (1994) no. 2, pp. 267-282. http://geodesic.mathdoc.fr/item/SM_1994_78_2_a0/

[1] Yudin V. A., “Povedenie konstant Lebega”, Matem. zametki, 17:3 (1975), 401–405 | MR | Zbl

[2] Colzani L., Soardi P. M., “$L^p $-norms of kernels on the $n $-dimensional torus”, Trans. Amer. Math. Soc., 266:2 (1981), 617–627 | DOI | MR | Zbl

[3] Yudin A. A., Yudin V. A., “Diskretnye teoremy vlozheniya i konstanty Lebega”, Matem. zametki, 22:3 (1977), 381–394 | MR | Zbl

[4] Belinskii E. S., “Povedenie konstant Lebega nekotorykh metodov summirovaniya kratnykh ryadov Fure”, Metricheskie voprosy teorii funktsii i otobrazhenii, Naukova dumka, Kiev, 1977, 19–39 | MR

[5] Liflyand I. R., “Tochnyi poryadok konstant Lebega giperbolicheskikh chastnykh summ kratnykh ryadov Fure”, Matem. zametki, 39:5 (1986), 674–683 | MR | Zbl

[6] Dyachenko M. I., “O skhodimosti dvoinykh trigonometricheskikh ryadov i ryadov Fure s monotonnymi koeffitsientami”, Matem. sbornik, 129:1 (1986), 55–72 | MR | Zbl

[7] Djachenco M. I., “Multiple trigonometric series with lexicographically monotone coefficients”, Anal. Math., 16:3 (1990), 173–190 | DOI | MR

[8] Dyachenko M. I., “Poryadok rosta konstant Lebega yader Dirikhle monotonnogo tipa”, Vestn. MGU. Matem., mekh., 1989, no. 6, 33–37 | MR | Zbl

[9] Babenko K. I., O skhodimosti v srednem kratnykh ryadov Fure i asimptotike yadra Dirikhle sfericheskikh srednikh., Preprint No 52, IPM AN SSSR, Moskva, 1971 | MR

[10] Dyachenko M. I., “Konstanty Lebega yader Dirikhle monotonnogo tipa i skhodimost kratnykh trigonometricheskikh ryadov”, Matem. zametki, 44:6 (1988), 758–769 | MR | Zbl

[11] Yudin V. A., Diss. ...dokt. fiz.-mat. nauk, MIAN, M., 1991

[12] Babenko K. I., “Ob asimptotike yadra Dirikhle sfericheskikh srednikh kratnykh ryadov Fure”, DAN SSSR, 243:5 (1978), 1097–1100 | MR | Zbl

[13] Moricz F., “On double cosine, sine and Walsh series with monotone coefficients”, Proc. Amer. Math. Soc., 109:2 (1990), 417–425 | DOI | MR | Zbl

[14] Dyachenko M. I., “Trigonometricheskie ryady s obobschenno-monotonnymi koeffitsientami”, Izv. VUZov. Matem., 1986, no. 7, 39–50 | MR | Zbl