by certain families of linear polynomial operators are studied. Some applications are given for the method developed.
@article{SM_1994_78_1_a9,
author = {K. V. Runovskii},
title = {On families of linear polynomial operators in $L_p$-spaces, $0<p<1$},
journal = {Sbornik. Mathematics},
pages = {165--173},
year = {1994},
volume = {78},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a9/}
}
K. V. Runovskii. On families of linear polynomial operators in $L_p$-spaces, $0
[1] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izvestiya AN SSSR. Ser. matem., 5:3 (1951), 219–242
[2] Potapov M. K., “O priblizhenii “uglom””, Trudy konferentsii po konstruktivnoi teorii funktsii, Budapesht, 1972, 371–399 | MR | Zbl
[3] Storozhenko E. A., Krotov V. G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_p$, $0
1$”, Matem. sb., 98:3 (1975), 395–415 | MR | Zbl[4] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR
[5] Korneichuk N. P., Tochnye konstanty v teorii priblizhenii, Nauka, M., 1987 | MR
[6] Brudnyi Yu. A., “Priblizhenie tselymi funktsiyami na vneshnosti otrezka i poluosi”, DAN SSSR, 124:4 (1959), 739–742 | MR | Zbl