@article{SM_1994_78_1_a8,
author = {V. A. Prokhorov},
title = {Rational approximation of analytic functions},
journal = {Sbornik. Mathematics},
pages = {139--164},
year = {1994},
volume = {78},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a8/}
}
V. A. Prokhorov. Rational approximation of analytic functions. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 139-164. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a8/
[1] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR
[2] Bagby T., “On interpolation by rational functions”, Duke Math. J., 36 (1969), 95–104 | DOI | MR | Zbl
[3] Gonchar A. A., “O skorosti ratsionalnoi approksimatsii analiticheskikh funktsii”, Trudy MIAN SSSR, 166, Nauka, M., 1984, 52–60 | MR | Zbl
[4] Gonchar A. A., “Ratsionalnye approksimatsii analiticheskikh funktsii”, Trudy Mezhdunarodnogo kongressa matematikov (Berkli, 1986), 1987
[5] Gonchar A. A., “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii”, Matem. sb., 105(147) (1978), 147–163 | MR | Zbl
[6] Gonchar A. A., Rakhmanov E. A., “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Matem. sb., 125(167) (1984), 117–127 | MR
[7] Gonchar A. A., Rakhmanov E. A., “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176) (1987), 306–352 | MR | Zbl
[8] Nutall J., “Asymptotics of diagonal Hermite-Pade polynomials”, J. Appr. Theory, 42:4 (1984), 299–386 | DOI | MR
[9] Nutall J., “Sets of minimal capacity, Pade approximations and bubble problem”, Bifurcation phenomena in Mathematical physics and related topics, eds. C. Bardos, D. Bessis, Reidel, Dordrecht, 1980, 185–201
[10] Stahl H., “Orthogonal polynomials with complex valued weight function. I; II”, Constr. approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl
[11] Parfenov O. G., “Otsenki singulyarnykh chisel operatora Karlesona”, Matem. sb., 131(173) (1986), 501–518
[12] Peller V. V., “Operatory Gankelya klassa $\sigma _p$ i ikh prilozheniya”, Matem. sb., 113 (157) (1980), 538–581 | MR | Zbl
[13] Peller V. V., Khruschev S. V., “Operatory Gankelya, nailuchshie priblizheniya i statsionarnye gaussovskie protsessy”, UMN, 37:1 (1982), 53–124 | MR | Zbl
[14] Peller V. V., “Opisanie operatorov Gankelya klassa $\sigma _p$ pri $p>0$, issledovanie skorosti ratsionalnoi approksimatsii i drugie prilozheniya”, Matem. sb., 122(164) (1983), 481–510 | MR
[15] Gonchar A. A., “Rational approximation of analytic functions”, Linear and complex analysis problems, Lect. Notes Math., 1043, eds. V. P. Havin, S. V. Hruscev, N. K. Nikol'sci, Springer, 1982, 471–474
[16] Adamyan V. M., Arov D. Z., Krein M. G., “Analiticheskie svoistva par Shmidta, gankelevy operatory i obobschennaya zadacha Shura–Tagaki”, Matem. sb., 86(128) (1971), 34–75 | MR
[17] Prokhorov V. A., O skorosti ratsionalnoi approksimatsii analiticheskikh funktsii, Preprint VINITI. 313-V92, Belorus. un-t, 1991
[18] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1976
[19] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[20] Gonchar A. A., “Lokalnoe uslovie odnoznachnosti analiticheskikh funktsii”, Matem. sb., 89(131) (1972), 148–164 | MR | Zbl
[21] Prokhorov V. A., “Ob odnoi teoreme Adamyana–Arova–Kreina”, Matem sb., 184:1 (1993), 89–104 | Zbl
[22] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.-L., 1950
[23] Tumarkin G. Ts., Khavinson S. Yu., “K opredeleniyu analiticheskikh funktsii klassa $E_p$ v mnogosvyaznykh oblastyakh”, UMN, 13:1 (1958), 201–206 | MR | Zbl
[24] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR
[25] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl
[26] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl
[27] Tsuji M., Potential Theory in Modern Functions Theory, Maruzen, Tokyo, 1959 | MR | Zbl
[28] Varga R. S., “On an extension of a result of S. N. Bernstein”, J. Approx. Theory, 1 (1968), 176–179 | DOI | MR | Zbl
[29] Shah S. M., “Polynomial approximation of an entire function and generalized orders”, J. Approx. Theory, 19 (1977), 315–324 | DOI | MR | Zbl
[30] Winiarski T., “Approximation and interpolation of entire functions”, Ann. Polon. Math., 23 (1970), 259–273 | MR | Zbl
[31] Polya G., “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete, III”, Sitzgsber Preuss. Acad. Wiss. Phys.-Math. Kl., 1929, 55–62 | Zbl