Some systems of generators of the~group $\operatorname{GL}(n,\mathbb Z)$ for $n\leqslant 5$
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 131-137
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved geometrically that the groups $\operatorname{GL}(n,\mathbb Z)$, $0$, are generated by systems of generators of finite groups $G_n$ and, for each such $n$, one additional substitution $h(n)$.
@article{SM_1994_78_1_a7,
author = {A. Dress and S. S. Ryshkov},
title = {Some systems of generators of the~group $\operatorname{GL}(n,\mathbb Z)$ for $n\leqslant 5$},
journal = {Sbornik. Mathematics},
pages = {131--137},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a7/}
}
TY - JOUR
AU - A. Dress
AU - S. S. Ryshkov
TI - Some systems of generators of the~group $\operatorname{GL}(n,\mathbb Z)$ for $n\leqslant 5$
JO - Sbornik. Mathematics
PY - 1994
SP - 131
EP - 137
VL - 78
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a7/
LA - en
ID - SM_1994_78_1_a7
ER -
A. Dress; S. S. Ryshkov. Some systems of generators of the~group $\operatorname{GL}(n,\mathbb Z)$ for $n\leqslant 5$. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 131-137. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a7/