Some systems of generators of the~group $\operatorname{GL}(n,\mathbb Z)$ for $n\leqslant 5$
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 131-137

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved geometrically that the groups $\operatorname{GL}(n,\mathbb Z)$, $0$, are generated by systems of generators of finite groups $G_n$ and, for each such $n$, one additional substitution $h(n)$.
@article{SM_1994_78_1_a7,
     author = {A. Dress and S. S. Ryshkov},
     title = {Some systems of generators of the~group $\operatorname{GL}(n,\mathbb Z)$ for $n\leqslant 5$},
     journal = {Sbornik. Mathematics},
     pages = {131--137},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a7/}
}
TY  - JOUR
AU  - A. Dress
AU  - S. S. Ryshkov
TI  - Some systems of generators of the~group $\operatorname{GL}(n,\mathbb Z)$ for $n\leqslant 5$
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 131
EP  - 137
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a7/
LA  - en
ID  - SM_1994_78_1_a7
ER  - 
%0 Journal Article
%A A. Dress
%A S. S. Ryshkov
%T Some systems of generators of the~group $\operatorname{GL}(n,\mathbb Z)$ for $n\leqslant 5$
%J Sbornik. Mathematics
%D 1994
%P 131-137
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a7/
%G en
%F SM_1994_78_1_a7
A. Dress; S. S. Ryshkov. Some systems of generators of the~group $\operatorname{GL}(n,\mathbb Z)$ for $n\leqslant 5$. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 131-137. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a7/