On a theorem of Adamian, Arov, and Krein
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 77-90

Voir la notice de l'article provenant de la source Math-Net.Ru

Some questions in the theory of Hankel operators are considered. The basic results include a theorem generalizing the Adamian–Arov–Krein theorem for the case when the continuous function $f$ giving rise to the Hankel operator $A_f$ is defined on the boundary of a multiply connected domain $G$ bounded by finitely many closed analytic Jordan curves $\Gamma$. Estimates are obtained for the singular numbers $s_n$ of the Hankel operator $A_f$ in terms of the best approximation $\Delta_n$ of $f$ in the space $L_\infty(\Gamma)$ by functions belonging to the class $\mathcal R_n+E_\infty(G)$, where $\mathcal R_n$ is the class of rational functions of order at most $n$, and $E_\infty(G)$ is the Smirnov class of bounded analytic functions on $G$.
@article{SM_1994_78_1_a4,
     author = {V. A. Prokhorov},
     title = {On a theorem of {Adamian,} {Arov,} and {Krein}},
     journal = {Sbornik. Mathematics},
     pages = {77--90},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a4/}
}
TY  - JOUR
AU  - V. A. Prokhorov
TI  - On a theorem of Adamian, Arov, and Krein
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 77
EP  - 90
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a4/
LA  - en
ID  - SM_1994_78_1_a4
ER  - 
%0 Journal Article
%A V. A. Prokhorov
%T On a theorem of Adamian, Arov, and Krein
%J Sbornik. Mathematics
%D 1994
%P 77-90
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a4/
%G en
%F SM_1994_78_1_a4
V. A. Prokhorov. On a theorem of Adamian, Arov, and Krein. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a4/