On a theorem of Adamian, Arov, and Krein
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 77-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some questions in the theory of Hankel operators are considered. The basic results include a theorem generalizing the Adamian–Arov–Krein theorem for the case when the continuous function $f$ giving rise to the Hankel operator $A_f$ is defined on the boundary of a multiply connected domain $G$ bounded by finitely many closed analytic Jordan curves $\Gamma$. Estimates are obtained for the singular numbers $s_n$ of the Hankel operator $A_f$ in terms of the best approximation $\Delta_n$ of $f$ in the space $L_\infty(\Gamma)$ by functions belonging to the class $\mathcal R_n+E_\infty(G)$, where $\mathcal R_n$ is the class of rational functions of order at most $n$, and $E_\infty(G)$ is the Smirnov class of bounded analytic functions on $G$.
@article{SM_1994_78_1_a4,
     author = {V. A. Prokhorov},
     title = {On a theorem of {Adamian,} {Arov,} and {Krein}},
     journal = {Sbornik. Mathematics},
     pages = {77--90},
     year = {1994},
     volume = {78},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a4/}
}
TY  - JOUR
AU  - V. A. Prokhorov
TI  - On a theorem of Adamian, Arov, and Krein
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 77
EP  - 90
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a4/
LA  - en
ID  - SM_1994_78_1_a4
ER  - 
%0 Journal Article
%A V. A. Prokhorov
%T On a theorem of Adamian, Arov, and Krein
%J Sbornik. Mathematics
%D 1994
%P 77-90
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a4/
%G en
%F SM_1994_78_1_a4
V. A. Prokhorov. On a theorem of Adamian, Arov, and Krein. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 77-90. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a4/

[1] Peller V. V., Khruschev S. V., “Operatory Gankelya, nailuchshie priblizheniya i statsionarnye gaussovskie protsessy”, UMN, 37:1 (1982), 53–124 | MR | Zbl

[2] Peller V. V., “Opisanie operatorov Gankelya klassa $\sigma _p $ pri $p>0 $, issledovanie skorosti ratsionalnoi approksimatsii i drugie prilozheniya”, Matem. sb., 122(164) (1983), 481–510 | MR

[3] Parfenov O. G., “Otsenki singulyarnykh chisel operatora Karlesona”, Matem. sb., 131(173) (1986), 501–518 | MR

[4] Adamyan V. M., Arov D. Z., Krein M. G., “Analiticheskie svoistva par Shmidta, gankelevy operatory i obobschennaya zadacha Shura–Tagaki”, Matem. sb., 86(128): (1971), 34–75 | MR

[5] Prokhorov V. A., “O ratsionalnoi approksimatsii analiticheskikh funktsii”, 5-th International Conference on Complex Analysis and Applications, Summaries (Varna), 1991, 51–52

[6] Prokhorov V. A., “O singulyarnykh chislakh operatora Gankelya”, XVI shkola po teorii operatorov v funktsionalnykh prostranstvakh, N. Novgorod, 1991, 182–183 | Zbl

[7] Prokhorov V. A., O skorosti ratsionalnoi approksimatsii analiticheskikh funktsii, Preprint VINITI. 313-V92, Belorus. un-t, 1991

[8] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.-L., 1950

[9] Tumarkin G. Ts., Khavinson S. Ya., “K opredeleniyu analiticheskikh funktsii klassa $E_p$ v mnogosvyaznykh oblastyakh”, UMN, 13:1 (1958), 201–206 | MR | Zbl

[10] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1976

[11] Kusis P., Vvedenie v teoriyu prostranstv $H^p $, Mir, M., 1984 | MR

[12] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[13] Tumarkin G. Ts., Khavinson S. Ya., “Ekstremalnye zadachi dlya nekotorykh klassov analiticheskikh funktsii v konechnosvyaznykh oblastyakh”, Matem. sb., 36(78) (1955), 445–478 | MR

[14] Tumarkin G. Ts., Khavinson S. Ya., “Issledovanie svoistv ekstremalnykh funktsii s pomoschyu sootnoshenii dvoistvennosti v ekstremalnykh zadachakh dlya klassov analiticheskikh funktsii v mnogosvyaznykh oblastyakh”, Matem. sb., 46(88) (1958), 195–228 | MR | Zbl

[15] Tumarkin G. Ts., Khavinson S. Ya., “Kachestvennye svoistva reshenii ekstremalnykh zadach nekotorykh tipov”, Issledovaniya po sovremennym problemam teorii funktsii kompleksnogo peremennogo, F.–M., M., 1960, 77–94 | MR

[16] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl