Partly dissipative semigroups generated by the Navier–Stokes system on two-dimensional manifolds, and their attractors
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 47-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Navier–Stokes equations $$ \partial_tu+\nabla_uu=-\nabla p+\nu\Delta u+f, \qquad \operatorname{div}u=0, $$ are considered on a two-dimensional compact manifold $M$; the phase space is not assumed to be orthogonal to the finite-dimensional space $\mathscr{H}$ of harmonic vector fields on $M$, $\mathscr H=\{u\in C^\infty(TM),\,\Delta u=0\}$, $ n=\dim\mathscr H$ is the first Betti number. It is proved that the Hausdorff (and fractal) dimensions of a global attractor $\mathscr A$ of this system satisfy $\dim_H\mathscr A\leqslant c_1G'^{2/3}(1+\ln G')^{1/3}+n+1$ $(\dim_F\mathscr A\leqslant c_2G'^{2/3}(1+\ln G')^{1/3}+2n+2)$, where $G'$ is a number analogous to the Grashof number. In the most important particular case $M=S^2$ (the unit sphere) the explicit values of the constants in the corresponding integral inequalities on the sphere are given, leading to the estimates, $\dim_H\mathscr A_{S^2}\leqslant 5.6G^{2/3}(4.3+\frac43\ln G)^{1/3}+1$, $\dim_F\mathscr A_{S^2}\leqslant 15.8G^{2/3}(4.3+\frac43\ln G)^{1/3}+2$. Analogous estimates are proved for the two-dimensional Navier–Stokes equations in a bounded domain with a boundary condition that ensures the absence of a boundary layer.
@article{SM_1994_78_1_a3,
     author = {A. A. Ilyin},
     title = {Partly dissipative semigroups generated by the {Navier{\textendash}Stokes} system on two-dimensional manifolds, and their attractors},
     journal = {Sbornik. Mathematics},
     pages = {47--76},
     year = {1994},
     volume = {78},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a3/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - Partly dissipative semigroups generated by the Navier–Stokes system on two-dimensional manifolds, and their attractors
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 47
EP  - 76
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a3/
LA  - en
ID  - SM_1994_78_1_a3
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T Partly dissipative semigroups generated by the Navier–Stokes system on two-dimensional manifolds, and their attractors
%J Sbornik. Mathematics
%D 1994
%P 47-76
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a3/
%G en
%F SM_1994_78_1_a3
A. A. Ilyin. Partly dissipative semigroups generated by the Navier–Stokes system on two-dimensional manifolds, and their attractors. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 47-76. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a3/

[1] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[2] Marchuk G. I., Dymnikov V. P., Zalesnyi V. B., Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizatsii, Gidrometeoizdat, L., 1987 | MR | Zbl

[3] Dubrovin V. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986 | MR

[4] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[5] Pedloski Dzh., Geofizicheskaya gidrodinamika, T. 1, 2, Mir, M., 1984

[6] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR

[7] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[8] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[9] Ilin A. A., “Uravneniya Nave–Stoksa i Eilera na dvumernykh zamknutykh mnogoobraziyakh”, Matem. sb., 181:4 (1990), 521–539 | Zbl

[10] Ilin A. A., Filatov A. N., “Ob odnoznachnoi razreshimosti uravnenii Nave–Stoksa na dvumernoi sfere”, DAN SSSR, 301:1 (1988), 18–22

[11] Ilin A. A., Filatov A. N., “Ustoichivost statsionarnykh reshenii uravnenii barotropnoi atmosfery po lineinomu priblizheniyu”, DAN SSSR, 306:6 (1989), 1362–1365

[12] Gill A., Dinamika atmosfery i okeana, T. 1, 2, Mir, M., 1986

[13] Dymnikov V. P., Skiba Yu. N., “O spektralnykh kriteriyakh ustoichivosti barotropnykh atmosfernykh potokov”, Izv. AN SSSR. Fizika atmosfery i okeana, 23:12 (1987), 1263–1274 | MR

[14] Dymnikov V. P., Filatov A. N., Ustoichivost krupnomasshtabnykh atmosfernykh protsessov, Gidrometeoizdat, L., 1990

[15] Goldberg S. I., Curvature and homology, Academic Press, New York–London, 1962 | MR

[16] Temam R., Infinite dimensional dynamical systems in mechanics and physics, Springer, New York, 1988 | MR | Zbl

[17] Constantin P., Foias C., Temam R., “On the dimension of the attractors in two-dimensional turbulence”, Physica D, 30:3 (1988), 284–286 | DOI | MR

[18] Ghidaglia J.-M., “On the fractal dimension of attractors for viscous incompressible fluid flows”, SIAM J. Mathematical Analysis, 17 (1986), 1139–1157 | DOI | MR | Zbl

[19] Ghidaglia J.-M., Marion M., Temam R., “Generalizations of the Sobolev–Lieb–Thirring inequalities and applications to the dimension of attractors”, Differential and Integral equations, 1:1 (1988), 1–21 | MR

[20] Wolansky G., “Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation”, Comm. on pure and appl. math., 41:1 (1988), 19–46 | DOI | MR | Zbl

[21] Marchioro C., “An example of absence of turbulence for any Reynolds number”, Comm. in math. phys., 105:1 (1986), 99–106 | DOI | MR | Zbl

[22] Ebin D., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. math., 92:1 (1970), 103–163 ; Математика, Сб. пер., 17:5–6 (1973) | DOI | MR

[23] Brezis H., Gallouet T., “Nonlinear Schrödinger evolution equation”, Nonlinear analysis. Theory, methods and applications, 4:4 (1980), 677–681 | DOI | MR | Zbl

[24] Foias C., Manley O., Temam R., Treve Y., “Asymptotic analysis of the Navier–Stokes equation”, Physica D, 9 (1983), 157–188 | DOI | MR | Zbl

[25] Lieb E., Thirring W., “Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities”, Studies in mathematical physics, Princeton Univ. Press, 1976, 269–303 | Zbl

[26] Temam R., Navier–Stokes equations and nonlinear functional analysis, Society for Industrial and applied mathematics, Philadelphia, 1983 | MR

[27] Temam R., Uravnenie Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[28] Marion M., “Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems”, SIAM J. Math. Analysis, 20:4 (1989), 816–844 | DOI | MR | Zbl

[29] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981

[30] Vishik M. I., Komech A. I., “Statisticheskie resheniya sistemy Nave–Stoksa i sistemy Eilera”, Uspekhi mekhaniki, 5:1/2 (1982), 65–120 | MR

[31] Yudovich V. I., “Nestatsionarnye techeniya idealnykh neszhimaemykh zhidkostei”, Zhurn. vychislit. matematiki i matem. fiziki, 3:6 (1963), 1032–1066 | MR | Zbl

[32] Bardos C., “Existence et unicite de la solution de l$'$équation d$'$Euler en dimension deux”, J. Math. Anal. Appl., 40 (1972), 769–790 | DOI | MR | Zbl