On three principles of solvability of operator equations
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 35-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three principles of solvability of operator equations are considered. The first is connected with the existence of solutions of equations in partially ordered sets and generalizes the Birkhoff–Tarski theorem and certain other results on this topic. The second is a result of the development of the Pokhozhaev–Krasnosel'skii–Zabreiko method, as applied to normal cones, connected with a covering of a Banach space with the help of a Gâteaux-differentiable mapping with closed range. The third generalizes ideas of Plastock, Krasnosel'skii, Zabreiko, and Cristea on global solvability of operator equations to the case of mappings of quasisemimetric spaces into normed cones. The results are illustrated by examples from the theory of integro-differential and differential equations.
@article{SM_1994_78_1_a2,
     author = {M. F. Sukhinin},
     title = {On three principles of solvability of operator equations},
     journal = {Sbornik. Mathematics},
     pages = {35--46},
     year = {1994},
     volume = {78},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a2/}
}
TY  - JOUR
AU  - M. F. Sukhinin
TI  - On three principles of solvability of operator equations
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 35
EP  - 46
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a2/
LA  - en
ID  - SM_1994_78_1_a2
ER  - 
%0 Journal Article
%A M. F. Sukhinin
%T On three principles of solvability of operator equations
%J Sbornik. Mathematics
%D 1994
%P 35-46
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a2/
%G en
%F SM_1994_78_1_a2
M. F. Sukhinin. On three principles of solvability of operator equations. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a2/

[1] Bakhtin V. I., “Teoremy suschestvovaniya nepodvizhnykh tochek dlya monotonnykh operatorov”, Funktsion. analiz. (Ulyanovsk), 19 (1982), 8–19 | MR | Zbl

[2] Bakhtin I. A., “Nepodvizhnye tochki monotonnykh operatorov v prostranstvakh Banakha”, Funktsion. analiz. (Ulyanovsk), 20 (1983), 9–19 | MR | Zbl

[3] Bakhtin I. A., “Nepodvizhnye tochki monotonnykh operatorov v banakhovykh prostranstvakh s ekstremalnymi konusami”, Funktsion. analiz. (Ulyanovsk), 21 (1983), 38–50 | MR | Zbl

[4] Birkgof G., Teoriya struktur, IL, M., 1952

[5] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[6] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl

[7] Zabreiko P. P., Krasnoselskii M. A., “O razreshimosti nelineinykh operatornykh uravnenii”, Funktsion. analiz i ego pril., 5:3 (1971), 42–44 | MR | Zbl

[8] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[9] Krasnoselskii M. A., “O neskolkikh novykh printsipakh nepodvizhnoi tochki”, DAN SSSR, 208:6 (1973), 1280–1281 | MR | Zbl

[10] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[11] Krylov N. V., Nelineinye ellipticheskie i parabolicheskie uravneniya, Nauka, M., 1985 | MR

[12] Lezhenina I. F., Lifshits E. A., “Lokalnye i globalnye teoremy razreshimosti nelineinykh operatornykh uravnenii”, Teoret. i prikl. zadachi optimizatsii, , M., 1985, 29–35 | MR

[13] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[14] Nishnianidze Z. G., “Nepodvizhnye tochki monotonnykh mnogoznachnykh operatorov”, Soobsch. AN GSSR, 114:3 (1984), 489–491 | MR | Zbl

[15] Pokhozhaev S. I., “O normalnoi razreshimosti nelineinykh uravnenii”, DAN SSSR, 184:1 (1969), 40–43 | MR

[16] Pokhozhaev S. I., “Normalnaya razreshimost nelineinykh uravnenii v ravnomerno vypuklykh banakhovykh prostranstvakh”, Funktsion. analiz i ego pril., 3:2 (1969), 80–84 | MR

[17] Sadyrkhanov R. S., “O syur'ektivnosti, stiranii mnozhestva osobennostei i globalnoi gomeomorfnosti otobrazhenii”, DAN SSSR, 280:5 (1985), 1069–1072 | MR

[18] Sukhinin M. F., “Pravilo mnozhitelei Lagranzha v lokalno vypuklykh prostranstvakh”, Sib. matem. zhurn., 23:4 (1982), 153–165 | MR | Zbl

[19] Sukhinin M. F., “Ob odnom integro-differentsialnom uravnenii i svyazannom s nim klasse funktsionalnykh prostranstv”, Primenenie metodov teorii funktsii i funktsion. analiza k zadacham matem. fiziki, Sb. dokl. VII sov.-chekhosl. seminara, EGU, Erevan, 1982, 324–326

[20] Sukhinin M. F., “O topologicheskikh konusakh, operatornykh uravneniyakh i metode Nyutona–Kantorovicha”, Mat. zametki, 33:1 (1983), 65–70 | MR | Zbl

[21] Sukhinin M. F., “O suschestvovanii reshenii nekotorykh funktsionalnykh i integralnykh uravnenii”, UMN, 40:2 (1985), 168 | MR | Zbl

[22] Sukhinin M. F., “O razreshimosti uravnenii v chastichno uporyadochennykh mnozhestvakh i polumetricheskikh prostranstvakh”, UMN, 44:5 (1989), 181–182 | MR | Zbl

[23] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[24] Cramer W. J., Ray W. O., “Solvability of nonlinear operator equations”, Pacif. J. Math., 95:1 (1981), 37–50 | MR | Zbl

[25] Cristea M., “A note on global inversion theorems and applications to differential equations”, Nonlinear Anal.: Theory, Meth. and Appl., 5:11 (1981), 1155–1161 | DOI | MR | Zbl

[26] Plastock R., “Homeomorphisms between Banach spaces”, Trans. Amer. Math. Soc., 200 (1974), 169–183 | DOI | MR | Zbl

[27] Radulescu M., Radulescu S., “Global inversion theorems and applications to differential equations”, Nonlinear Anal.: Theory, Meth. and Appl., 4:4 (1980), 951–965 | DOI | MR | Zbl

[28] Sandberg I. W., “Global inverse function theorems”, IEEE Trans. Circuits and Syst., 27:11 (1980), 998–1004 | DOI | MR | Zbl

[29] Sandberg I. W., “Global implicit function theorems”, IEEE Trans. Circuits and Syst., 28:2 (1981), 145–149 | DOI | MR | Zbl

[30] Turinici M., “Abstract monotone mappings and applications to functional differential equations”, Atti Accad. naz. Lincei Rend. Cl. sci. fis. mat. e natur., 66:3 (1979), 189–193 | MR | Zbl