On three principles of solvability of operator equations
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 35-46

Voir la notice de l'article provenant de la source Math-Net.Ru

Three principles of solvability of operator equations are considered. The first is connected with the existence of solutions of equations in partially ordered sets and generalizes the Birkhoff–Tarski theorem and certain other results on this topic. The second is a result of the development of the Pokhozhaev–Krasnosel'skii–Zabreiko method, as applied to normal cones, connected with a covering of a Banach space with the help of a Gâteaux-differentiable mapping with closed range. The third generalizes ideas of Plastock, Krasnosel'skii, Zabreiko, and Cristea on global solvability of operator equations to the case of mappings of quasisemimetric spaces into normed cones. The results are illustrated by examples from the theory of integro-differential and differential equations.
@article{SM_1994_78_1_a2,
     author = {M. F. Sukhinin},
     title = {On three principles of solvability of operator equations},
     journal = {Sbornik. Mathematics},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a2/}
}
TY  - JOUR
AU  - M. F. Sukhinin
TI  - On three principles of solvability of operator equations
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 35
EP  - 46
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a2/
LA  - en
ID  - SM_1994_78_1_a2
ER  - 
%0 Journal Article
%A M. F. Sukhinin
%T On three principles of solvability of operator equations
%J Sbornik. Mathematics
%D 1994
%P 35-46
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a2/
%G en
%F SM_1994_78_1_a2
M. F. Sukhinin. On three principles of solvability of operator equations. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a2/