The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 253-266
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of multiple interpolation is considered in the class $[\rho(r),\infty)^+$ of functions of at most normal type for the proximate order $\rho(r)$ in the upper half-plane
$C^+\colon f^{(k-1)}(a_n)=b_{n,k}$, $k = 1,\dots,q_n$, $n=1,2,\dots$, where the divisor $D=\{a_n,\,q_n\}$ has limit points only on the real axis, and the numbers $\{b_{n,k}\}$ satisfy the condition
$$
\varlimsup_{n\to\infty}r_n^{-\rho(r_n)}\ln\sup_{1\leqslant k\leqslant q_n}\dfrac{(\Lambda_n)^{k-1}|b_{n,k}|}{(k-1)!}\infty.
$$ The following result is valid.
Theorem. {\it $D$ is an interpolation divisor in the class $[\rho(r),\infty)^+$ if and only if
$$
\varlimsup_{n\to\infty}r_n^{-\rho(r_n)}\ln\frac{q_n!}{|E^{(q_n)}(a_n)|(\Lambda _n)^k}\infty,
$$
where $E(z)$ is the canonical product of the set $D$}.
Necessary and sufficient conditions are also found in terms of the measure determined by the divisor $D$: $\mu(G)=\sum_{a_n\in G}q_n\sin(\arg a_n)$.
@article{SM_1994_78_1_a15,
author = {K. G. Malyutin},
title = {The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type},
journal = {Sbornik. Mathematics},
pages = {253--266},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/}
}
TY - JOUR AU - K. G. Malyutin TI - The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type JO - Sbornik. Mathematics PY - 1994 SP - 253 EP - 266 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/ LA - en ID - SM_1994_78_1_a15 ER -
%0 Journal Article %A K. G. Malyutin %T The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type %J Sbornik. Mathematics %D 1994 %P 253-266 %V 78 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/ %G en %F SM_1994_78_1_a15
K. G. Malyutin. The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 253-266. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/