The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 253-266

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of multiple interpolation is considered in the class $[\rho(r),\infty)^+$ of functions of at most normal type for the proximate order $\rho(r)$ in the upper half-plane $C^+\colon f^{(k-1)}(a_n)=b_{n,k}$, $k = 1,\dots,q_n$, $n=1,2,\dots$, where the divisor $D=\{a_n,\,q_n\}$ has limit points only on the real axis, and the numbers $\{b_{n,k}\}$ satisfy the condition $$ \varlimsup_{n\to\infty}r_n^{-\rho(r_n)}\ln\sup_{1\leqslant k\leqslant q_n}\dfrac{(\Lambda_n)^{k-1}|b_{n,k}|}{(k-1)!}\infty. $$ The following result is valid. Theorem. {\it $D$ is an interpolation divisor in the class $[\rho(r),\infty)^+$ if and only if $$ \varlimsup_{n\to\infty}r_n^{-\rho(r_n)}\ln\frac{q_n!}{|E^{(q_n)}(a_n)|(\Lambda _n)^k}\infty, $$ where $E(z)$ is the canonical product of the set $D$}. Necessary and sufficient conditions are also found in terms of the measure determined by the divisor $D$: $\mu(G)=\sum_{a_n\in G}q_n\sin(\arg a_n)$.
@article{SM_1994_78_1_a15,
     author = {K. G. Malyutin},
     title = {The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type},
     journal = {Sbornik. Mathematics},
     pages = {253--266},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/}
}
TY  - JOUR
AU  - K. G. Malyutin
TI  - The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 253
EP  - 266
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/
LA  - en
ID  - SM_1994_78_1_a15
ER  - 
%0 Journal Article
%A K. G. Malyutin
%T The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type
%J Sbornik. Mathematics
%D 1994
%P 253-266
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/
%G en
%F SM_1994_78_1_a15
K. G. Malyutin. The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 253-266. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/