The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 253-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of multiple interpolation is considered in the class $[\rho(r),\infty)^+$ of functions of at most normal type for the proximate order $\rho(r)$ in the upper half-plane $C^+\colon f^{(k-1)}(a_n)=b_{n,k}$, $k = 1,\dots,q_n$, $n=1,2,\dots$, where the divisor $D=\{a_n,\,q_n\}$ has limit points only on the real axis, and the numbers $\{b_{n,k}\}$ satisfy the condition $$ \varlimsup_{n\to\infty}r_n^{-\rho(r_n)}\ln\sup_{1\leqslant k\leqslant q_n}\dfrac{(\Lambda_n)^{k-1}|b_{n,k}|}{(k-1)!}<\infty. $$ The following result is valid. Theorem. {\it $D$ is an interpolation divisor in the class $[\rho(r),\infty)^+$ if and only if $$ \varlimsup_{n\to\infty}r_n^{-\rho(r_n)}\ln\frac{q_n!}{|E^{(q_n)}(a_n)|(\Lambda _n)^k}<\infty, $$ where $E(z)$ is the canonical product of the set $D$}. Necessary and sufficient conditions are also found in terms of the measure determined by the divisor $D$: $\mu(G)=\sum_{a_n\in G}q_n\sin(\arg a_n)$.
@article{SM_1994_78_1_a15,
     author = {K. G. Malyutin},
     title = {The problem of multiple interpolation in the~half-plane in the~class of analytic functions of finite order and normal type},
     journal = {Sbornik. Mathematics},
     pages = {253--266},
     year = {1994},
     volume = {78},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/}
}
TY  - JOUR
AU  - K. G. Malyutin
TI  - The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 253
EP  - 266
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/
LA  - en
ID  - SM_1994_78_1_a15
ER  - 
%0 Journal Article
%A K. G. Malyutin
%T The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type
%J Sbornik. Mathematics
%D 1994
%P 253-266
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/
%G en
%F SM_1994_78_1_a15
K. G. Malyutin. The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 253-266. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a15/

[1] Lapin G. P., “Ob interpolirovanii v klasse tselykh funktsii konechnogo poryadka i konechnogo tipa”, Matem. sb., 29(71) (1951), 565–580 | MR | Zbl

[2] Bratischev A. V., “Ob interpolyatsionnoi zadache v nekotorykh klassakh tselykh funktsii”, Sib. matem. zhurn., 17:1 (1976), 30–43 | MR | Zbl

[3] Korobeinik Yu. F., “Interpolyatsionnye zadachi i gustye mnozhestva”, Sib. matem. zhurn., 31:6 (1990), 80–90 | MR

[4] Uen N. T., “Interpolirovanie s kratnymi uzlami v poluploskosti v klasse analiticheskikh funktsii konechnogo poryadka i normalnogo tipa”, Teoriya funktsii, funktsion. analiz i ikh pril., 1979, no. 31, 119–129 | Zbl

[5] Russakovskii A. M., “Zadacha kratnoi interpolyatsii v klasse funktsii, analiticheskikh v poluploskosti i imeyuschikh indikator ne vyshe dannogo”, DAN SSSR, 269:4 (1983), 814–817 | MR | Zbl

[6] Russakovskii A. M., Zadacha kratnoi interpolyatsii v klasse funktsii, analiticheskikh v poluploskosti i imeyuschikh indikator ne vyshe dannogo, Dep. v VINITI 12.04.82, No 5087–B82, Kharkovsk. gos. un-t, 1982, 64 pp.

[7] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[8] Videnskii I. V., “Kratnaya interpolyatsiya proizvedeniyami Blyashke”, Zapiski nauch. sem. LOMI, 73, Nauka, L., 1977, 195–202 | MR | Zbl

[9] Vinogradov S. A., Khavin V. P., “Svobodnaya interpolyatsiya v $H^\infty $ i nekotorykh drugikh klassakh funktsii”, Zapiski nauch. sem. LOMI, 47, Nauka, L., 1974, 15–54 | MR | Zbl

[10] Grishin A. F., “O regulyarnosti rosta subgarmonicheskikh funktsii”, Teoriya funktsii, funktsion. analiz i ikh pril., 1968, no. 7, 59–84 | Zbl