$C^m$-approximations by harmonic polynomials on compact sets in~$\mathbb R^n$
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 231-251
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions for approximation of functions by harmonic polynomials on compact sets $X$ in
$\mathbb R^n$ $(n = 2,3,\dots)$ in Whitney type norms on the spaces $C_{\mathrm{jet}}^m(X)$ $(m\geqslant 0)$ are studied in this paper.
@article{SM_1994_78_1_a14,
author = {P. V. Paramonov},
title = {$C^m$-approximations by harmonic polynomials on compact sets in~$\mathbb R^n$},
journal = {Sbornik. Mathematics},
pages = {231--251},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a14/}
}
P. V. Paramonov. $C^m$-approximations by harmonic polynomials on compact sets in~$\mathbb R^n$. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 231-251. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a14/