$C^m$-approximations by harmonic polynomials on compact sets in~$\mathbb R^n$
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 231-251

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for approximation of functions by harmonic polynomials on compact sets $X$ in $\mathbb R^n$ $(n = 2,3,\dots)$ in Whitney type norms on the spaces $C_{\mathrm{jet}}^m(X)$ $(m\geqslant 0)$ are studied in this paper.
@article{SM_1994_78_1_a14,
     author = {P. V. Paramonov},
     title = {$C^m$-approximations by harmonic polynomials on compact sets in~$\mathbb R^n$},
     journal = {Sbornik. Mathematics},
     pages = {231--251},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a14/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - $C^m$-approximations by harmonic polynomials on compact sets in~$\mathbb R^n$
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 231
EP  - 251
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a14/
LA  - en
ID  - SM_1994_78_1_a14
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T $C^m$-approximations by harmonic polynomials on compact sets in~$\mathbb R^n$
%J Sbornik. Mathematics
%D 1994
%P 231-251
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a14/
%G en
%F SM_1994_78_1_a14
P. V. Paramonov. $C^m$-approximations by harmonic polynomials on compact sets in~$\mathbb R^n$. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 231-251. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a14/