Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the conormal derivative
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 215-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Partial regularity of a generalized solution $u\colon\Omega\subset\mathbb R^n\to\mathbb R^N$, $n>2$, $N>1$, of a quasilinear elliptic system is proved under a nonsmooth condition on the conormal derivative. The singular set $\Sigma\subset\overline\Omega$ is described; it is proved that for some $p>2$ the Hausdorff dimension of $\Sigma$ is equal to $n-p$. In the proof essential use is made of a theorem proved earlier by the author on reverse inequalities with surface integrals.
@article{SM_1994_78_1_a13,
     author = {A. A. Arkhipova},
     title = {Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative},
     journal = {Sbornik. Mathematics},
     pages = {215--230},
     year = {1994},
     volume = {78},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the conormal derivative
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 215
EP  - 230
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/
LA  - en
ID  - SM_1994_78_1_a13
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the conormal derivative
%J Sbornik. Mathematics
%D 1994
%P 215-230
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/
%G en
%F SM_1994_78_1_a13
A. A. Arkhipova. Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the conormal derivative. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 215-230. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/

[1] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princenton U. Press, Princenton, 1983 | MR | Zbl

[2] Giaquinta M., “A counter-example to the boundary regularity of solutions to elliptic quasilinear systems”, Manuscripta Math., 26 (1978), 217–220 | DOI | MR

[3] Giaquinta M., Modica G., “Nonlinear systems of the type of the stationary Navier–Stokes systems”, J. für die reine und Angew. Math., 330 (1982), 173–214 | MR | Zbl

[4] Arkhipova A. A., “Obratnye neravenstva Gëldera s granichnym integralom i $L_p$-otsenki v zadachakh s usloviem Neimana”, Nekotorye prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, SO AN SSSR, Novosibirsk, 1990, 3–20

[5] Arkhipova A. A., “Nekotorye prilozheniya obratnykh neravenstv Gëldera s granichnym integralom”, Problemy matematicheskogo analiza, no. 12, LGU, 1990, 5–19 | MR

[6] Arkhipova A. A., “Obratnye neravenstva Gëldera v parabolicheskikh zadachakh s anizotropnymi prostranstvami dannykh”, Nekotorye prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, SO AN SSSR, Novosibirsk, 1991, 3–22

[7] Arkhipova A. A., “$L_p$-otsenki gradientov reshenii nachalno-kraevykh zadach dlya kvazilineinykh parabolicheskikh sistem”, Problemy matematicheskogo analiza, no. 13, LGU, 1992, 4–21

[8] Campanato S., “Equazioni ellittiche del secondo ordine e spazi $L_{2,\lambda }$”, Ann. Mat. Pura e Appl., 69 (1965), 321–380 | DOI | MR