Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 215-230

Voir la notice de l'article provenant de la source Math-Net.Ru

Partial regularity of a generalized solution $u\colon\Omega\subset\mathbb R^n\to\mathbb R^N$, $n>2$, $N>1$, of a quasilinear elliptic system is proved under a nonsmooth condition on the conormal derivative. The singular set $\Sigma\subset\overline\Omega$ is described; it is proved that for some $p>2$ the Hausdorff dimension of $\Sigma$ is equal to $n-p$. In the proof essential use is made of a theorem proved earlier by the author on reverse inequalities with surface integrals.
@article{SM_1994_78_1_a13,
     author = {A. A. Arkhipova},
     title = {Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative},
     journal = {Sbornik. Mathematics},
     pages = {215--230},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 215
EP  - 230
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/
LA  - en
ID  - SM_1994_78_1_a13
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative
%J Sbornik. Mathematics
%D 1994
%P 215-230
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/
%G en
%F SM_1994_78_1_a13
A. A. Arkhipova. Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 215-230. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/