Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 215-230
Voir la notice de l'article provenant de la source Math-Net.Ru
Partial regularity of a generalized solution $u\colon\Omega\subset\mathbb R^n\to\mathbb R^N$, $n>2$, $N>1$, of a quasilinear elliptic system is proved under a nonsmooth condition on the conormal derivative. The singular set
$\Sigma\subset\overline\Omega$ is described; it is proved that for some $p>2$ the Hausdorff dimension of $\Sigma$ is equal to $n-p$. In the proof essential use is made of a theorem proved earlier by the author on reverse inequalities with surface integrals.
@article{SM_1994_78_1_a13,
author = {A. A. Arkhipova},
title = {Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative},
journal = {Sbornik. Mathematics},
pages = {215--230},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/}
}
TY - JOUR AU - A. A. Arkhipova TI - Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative JO - Sbornik. Mathematics PY - 1994 SP - 215 EP - 230 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/ LA - en ID - SM_1994_78_1_a13 ER -
%0 Journal Article %A A. A. Arkhipova %T Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative %J Sbornik. Mathematics %D 1994 %P 215-230 %V 78 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/ %G en %F SM_1994_78_1_a13
A. A. Arkhipova. Partial regularity of solutions of quasilinear elliptic systems with nonsmooth condition on the~conormal derivative. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 215-230. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a13/