@article{SM_1994_78_1_a12,
author = {S. G. Lobanov},
title = {Peano's theorem is false for any infinite-dimensional {Fr\'echet} space},
journal = {Sbornik. Mathematics},
pages = {211--214},
year = {1994},
volume = {78},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a12/}
}
S. G. Lobanov. Peano's theorem is false for any infinite-dimensional Fréchet space. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 211-214. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a12/
[1] Godunov A. N., “O teoreme Peano v banakhovykh prostranstvakh”, Funk. analiz i ego pril., 9:1 (1975), 59–60 | MR | Zbl
[2] Cellina A., “On nonexistence of solution of differential equations in nonreflexive spaces”, Bull. Amer. Math. Soc., 78 (1972), 1069–1072 | DOI | MR | Zbl
[3] Astala K., “On Peano`s theorem in locally convex spaces”, Stud. Math., 73:3 (1982), 213–223 | MR | Zbl
[4] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR
[5] Bessaga C., Pełczynski A., Rolewicz S., “On diametral approximative dimention and linear homogeneity of $F$-spaces”, Bull. Acad. Pol. Sci., 9 (1961), 677–683 | MR | Zbl
[6] Bonet J., Perez Carreras P., Barelled locally convex spaces, Math. studies, 131, North-Holland, 1987 | MR | Zbl
[7] Dubinsky Ed., The structure of nuclear Frechet spaces, Lect. Notes Math., 720, 1979 | MR | Zbl
[8] Dugunji J., “An extension of Titze`s theorem”, Pacific. J. Math., 1 (1951), 353–367 | MR