Peano's theorem is false for any infinite-dimensional Fr\'echet space
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 211-214
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for any nonnormable Fréchet space $E$ a continuous map $f\colon E\to E$ and a closed infinite-dimensional subspace $L$ can be found such that the Cauchy problem $\dot x=f(x)$, $x(0)=u$ has no solution for any $u\in L$. Previous counterexamples to Peano's theorem cover Banach spaces and nonsemireflexive spaces.
@article{SM_1994_78_1_a12,
author = {S. G. Lobanov},
title = {Peano's theorem is false for any infinite-dimensional {Fr\'echet} space},
journal = {Sbornik. Mathematics},
pages = {211--214},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a12/}
}
S. G. Lobanov. Peano's theorem is false for any infinite-dimensional Fr\'echet space. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 211-214. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a12/