On asymptotic solutions of systems of differential equations with deviating argument in certain critical cases
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 175-186
Voir la notice de l'article provenant de la source Math-Net.Ru
Sufficient conditions are found for the existence of particular solutions of the system
$$
\dot x(t) =f\bigl(x(t),x(t+t_1),\dots,x(t+t_k)\bigr),\qquad x\in \mathbb R^n,
$$
that converge to the critical point $x=0$ as $t\to+\infty$ or as $t\to-\infty$, but not exponentially.
@article{SM_1994_78_1_a10,
author = {S. D. Furta},
title = {On asymptotic solutions of systems of differential equations with deviating argument in certain critical cases},
journal = {Sbornik. Mathematics},
pages = {175--186},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a10/}
}
TY - JOUR AU - S. D. Furta TI - On asymptotic solutions of systems of differential equations with deviating argument in certain critical cases JO - Sbornik. Mathematics PY - 1994 SP - 175 EP - 186 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a10/ LA - en ID - SM_1994_78_1_a10 ER -
S. D. Furta. On asymptotic solutions of systems of differential equations with deviating argument in certain critical cases. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 175-186. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a10/