On the order of growth $o(\log\log n)$ of the partial sums of Fourier–Stieltjes series of random measures
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 11-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Random measures of the form $$ \sum_{i=1}^\infty m_i\delta_{\theta_i}, \qquad \sum_{i=1}^\infty|m_i|<\infty, $$ are considered, where $\delta_{\theta_i}$ is a unit mass concentrated at the point $\theta_i\in(0;2\pi)$. For any sequence of natural numbers $\{l_k\}_{k=1}^\infty$ it is established that for almost all sequences $\theta=\{\theta_i\}_{i=1}^\infty$ the partial sums $S_{l_k}(x;d\mu_\theta)$ of the Fourier–Stieltjes series of the measure have order $o(\log\log k)$ for almost all $x\in(0;2\pi)$. As proved by Kahane in 1961, the order $o(\log\log k)$ cannot be improved. This result is connected with the well-known problem of Zygmund of finding the exact order of growth of the partial sums of Fourier series almost everywhere.
@article{SM_1994_78_1_a1,
     author = {G. A. Karagulian},
     title = {On the order of growth $o(\log\log n)$ of the~partial sums of {Fourier{\textendash}Stieltjes} series of random measures},
     journal = {Sbornik. Mathematics},
     pages = {11--33},
     year = {1994},
     volume = {78},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/}
}
TY  - JOUR
AU  - G. A. Karagulian
TI  - On the order of growth $o(\log\log n)$ of the partial sums of Fourier–Stieltjes series of random measures
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 11
EP  - 33
VL  - 78
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/
LA  - en
ID  - SM_1994_78_1_a1
ER  - 
%0 Journal Article
%A G. A. Karagulian
%T On the order of growth $o(\log\log n)$ of the partial sums of Fourier–Stieltjes series of random measures
%J Sbornik. Mathematics
%D 1994
%P 11-33
%V 78
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/
%G en
%F SM_1994_78_1_a1
G. A. Karagulian. On the order of growth $o(\log\log n)$ of the partial sums of Fourier–Stieltjes series of random measures. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 11-33. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/

[1] Kahane J. P., “Sur la divergence presque sure presque partout de certaines series de Fourier aleatoies”, Annales Univ. sci. Budapest, 3–4 (1960–61), 101–108 | MR

[2] Kakhan Zh.-P., Sluchainye funktsionalnye ryady, Mir, M., 1973 | MR | Zbl

[3] Kolmogoroff A. N., “Une serie de Fourier–Lebesque divergent presque partout”, Fund. Math., 4 (1923), 96–97

[4] Stein E. M., “On limits of sequences of operators”, Ann. Math., 74 (1961), 140–170 | DOI | MR | Zbl

[5] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–157 | DOI | MR | Zbl

[6] Hunt R. A., On the convergence of Fourier series in orthogonal expansions and their continous analogues, Southern Illinois University Press, 1968, p. 235–256 | MR | Zbl

[7] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[8] Oskolkov K. I., “Podposledovatelnosti summ Fure integriruemykh funktsii”, Tr. MIAN, 167, Nauka, M., 1985, 239–260 | MR | Zbl

[9] Gogoladze L. D., “O silnoi summiruemosti pochti vsyudu”, Matem. sb., 135(177) (1988), 158–169 | MR

[10] Rodin V. A., “The space BMO and strong means of Fourier series”, Ann. Math., 16 (1990), 291–302 | DOI | MR | Zbl

[11] Marcinkiewicz J., “Sur la sommabilitee forte des series de Fourier”, J. London Math. Soc., 14 (1939), 162–168 | DOI | MR | Zbl

[12] Zygmund A., “On the convergence and summability of power series on the circle of convergence”, Proc. London Math. Soc., 47 (1941), 326–350 | DOI | MR

[13] Karagulyan G. A., “O raskhodimosti silnykh $\varPhi $-srednikh ryadov Fure”, Izv. AN ArmSSR. Ser. mat., 26:2 (1991) | MR | Zbl

[14] Oskolkov K. I., “O silnoi summiruemosti ryadov Fure”, Tr. MIAN, 172, Nauka, M., 1985, 280–290 | MR | Zbl

[15] Gusman M., Differentsirovanie integralov v $R^n $, Mir, M., 1978 | MR