On the order of growth $o(\log\log n)$ of the~partial sums of Fourier--Stieltjes series of random measures
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 11-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Random measures of the form $$ \sum_{i=1}^\infty m_i\delta_{\theta_i}, \qquad \sum_{i=1}^\infty|m_i|\infty, $$ are considered, where $\delta_{\theta_i}$ is a unit mass concentrated at the point $\theta_i\in(0;2\pi)$. For any sequence of natural numbers $\{l_k\}_{k=1}^\infty$ it is established that for almost all sequences $\theta=\{\theta_i\}_{i=1}^\infty$ the partial sums $S_{l_k}(x;d\mu_\theta)$ of the Fourier–Stieltjes series of the measure have order $o(\log\log k)$ for almost all $x\in(0;2\pi)$. As proved by Kahane in 1961, the order $o(\log\log k)$ cannot be improved. This result is connected with the well-known problem of Zygmund of finding the exact order of growth of the partial sums of Fourier series almost everywhere.
@article{SM_1994_78_1_a1,
     author = {G. A. Karagulian},
     title = {On the order of growth $o(\log\log n)$ of the~partial sums of {Fourier--Stieltjes} series of random measures},
     journal = {Sbornik. Mathematics},
     pages = {11--33},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/}
}
TY  - JOUR
AU  - G. A. Karagulian
TI  - On the order of growth $o(\log\log n)$ of the~partial sums of Fourier--Stieltjes series of random measures
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 11
EP  - 33
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/
LA  - en
ID  - SM_1994_78_1_a1
ER  - 
%0 Journal Article
%A G. A. Karagulian
%T On the order of growth $o(\log\log n)$ of the~partial sums of Fourier--Stieltjes series of random measures
%J Sbornik. Mathematics
%D 1994
%P 11-33
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/
%G en
%F SM_1994_78_1_a1
G. A. Karagulian. On the order of growth $o(\log\log n)$ of the~partial sums of Fourier--Stieltjes series of random measures. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 11-33. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/