On the order of growth $o(\log\log n)$ of the~partial sums of Fourier--Stieltjes series of random measures
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 11-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Random measures of the form
$$
\sum_{i=1}^\infty m_i\delta_{\theta_i}, \qquad \sum_{i=1}^\infty|m_i|\infty,
$$
are considered, where $\delta_{\theta_i}$ is a unit mass concentrated at the point $\theta_i\in(0;2\pi)$. For any sequence of natural numbers $\{l_k\}_{k=1}^\infty$ it is established that for almost all sequences $\theta=\{\theta_i\}_{i=1}^\infty$ the partial sums $S_{l_k}(x;d\mu_\theta)$ of the Fourier–Stieltjes series of the measure have order $o(\log\log k)$ for almost all $x\in(0;2\pi)$. As proved by Kahane in 1961, the order $o(\log\log k)$ cannot be improved. This result is connected with the well-known problem of Zygmund of finding the exact order of growth of the partial sums of Fourier series almost everywhere.
@article{SM_1994_78_1_a1,
author = {G. A. Karagulian},
title = {On the order of growth $o(\log\log n)$ of the~partial sums of {Fourier--Stieltjes} series of random measures},
journal = {Sbornik. Mathematics},
pages = {11--33},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/}
}
TY - JOUR AU - G. A. Karagulian TI - On the order of growth $o(\log\log n)$ of the~partial sums of Fourier--Stieltjes series of random measures JO - Sbornik. Mathematics PY - 1994 SP - 11 EP - 33 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/ LA - en ID - SM_1994_78_1_a1 ER -
G. A. Karagulian. On the order of growth $o(\log\log n)$ of the~partial sums of Fourier--Stieltjes series of random measures. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 11-33. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a1/