On the possibility of holomorphic extension, into a~domain, of functions defined on a~connected piece of its boundary.~II
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 1-10

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a continuation of [1] (see also [2]), in which simple criteria were obtained for the existence of holomorphic extension, into a domain, of a function defined on a connected piece of its boundary. The main result was obtained for the case when the domain is a “truncated” ball. Here we consider a wider class of domains and obtain corresponding criteria in explicit analytic form. For the case of a “truncated” ball these criteria are simpler than the ones in [1].
@article{SM_1994_78_1_a0,
     author = {L. A. Aizenberg and A. M. Kytmanov},
     title = {On the possibility of holomorphic extension, into a~domain, of functions defined on a~connected piece of its {boundary.~II}},
     journal = {Sbornik. Mathematics},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a0/}
}
TY  - JOUR
AU  - L. A. Aizenberg
AU  - A. M. Kytmanov
TI  - On the possibility of holomorphic extension, into a~domain, of functions defined on a~connected piece of its boundary.~II
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 1
EP  - 10
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a0/
LA  - en
ID  - SM_1994_78_1_a0
ER  - 
%0 Journal Article
%A L. A. Aizenberg
%A A. M. Kytmanov
%T On the possibility of holomorphic extension, into a~domain, of functions defined on a~connected piece of its boundary.~II
%J Sbornik. Mathematics
%D 1994
%P 1-10
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a0/
%G en
%F SM_1994_78_1_a0
L. A. Aizenberg; A. M. Kytmanov. On the possibility of holomorphic extension, into a~domain, of functions defined on a~connected piece of its boundary.~II. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a0/