On the possibility of holomorphic extension, into a~domain, of functions defined on a~connected piece of its boundary.~II
Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 1-10
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is a continuation of [1] (see also [2]), in which simple criteria were obtained for the existence of holomorphic extension, into a domain, of a function defined on a connected piece of its boundary. The main result was obtained for the case when the domain is a “truncated” ball. Here we consider a wider class of domains and obtain corresponding criteria in explicit analytic form. For the case of a “truncated” ball these criteria are simpler than the ones in [1].
@article{SM_1994_78_1_a0,
author = {L. A. Aizenberg and A. M. Kytmanov},
title = {On the possibility of holomorphic extension, into a~domain, of functions defined on a~connected piece of its {boundary.~II}},
journal = {Sbornik. Mathematics},
pages = {1--10},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_78_1_a0/}
}
TY - JOUR AU - L. A. Aizenberg AU - A. M. Kytmanov TI - On the possibility of holomorphic extension, into a~domain, of functions defined on a~connected piece of its boundary.~II JO - Sbornik. Mathematics PY - 1994 SP - 1 EP - 10 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1994_78_1_a0/ LA - en ID - SM_1994_78_1_a0 ER -
%0 Journal Article %A L. A. Aizenberg %A A. M. Kytmanov %T On the possibility of holomorphic extension, into a~domain, of functions defined on a~connected piece of its boundary.~II %J Sbornik. Mathematics %D 1994 %P 1-10 %V 78 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1994_78_1_a0/ %G en %F SM_1994_78_1_a0
L. A. Aizenberg; A. M. Kytmanov. On the possibility of holomorphic extension, into a~domain, of functions defined on a~connected piece of its boundary.~II. Sbornik. Mathematics, Tome 78 (1994) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/SM_1994_78_1_a0/