Classification of closed minimal networks on flat two-dimensional tori
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 391-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete description of closed locally minimal networks on flat two-dimensional tori is obtained.
@article{SM_1994_77_2_a9,
     author = {A. O. Ivanov and I. V. Ptitsyna and A. A. Tuzhilin},
     title = {Classification of closed minimal networks on flat two-dimensional tori},
     journal = {Sbornik. Mathematics},
     pages = {391--425},
     year = {1994},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a9/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - I. V. Ptitsyna
AU  - A. A. Tuzhilin
TI  - Classification of closed minimal networks on flat two-dimensional tori
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 391
EP  - 425
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a9/
LA  - en
ID  - SM_1994_77_2_a9
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A I. V. Ptitsyna
%A A. A. Tuzhilin
%T Classification of closed minimal networks on flat two-dimensional tori
%J Sbornik. Mathematics
%D 1994
%P 391-425
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a9/
%G en
%F SM_1994_77_2_a9
A. O. Ivanov; I. V. Ptitsyna; A. A. Tuzhilin. Classification of closed minimal networks on flat two-dimensional tori. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 391-425. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a9/

[1] Preparata F., Sheimos M., Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989 | MR | Zbl

[2] Garey M. R., Graham R. L., Johnson D. S., “Some $NP$-complete geometric problems”, Eighth Annual Symp. on Theory of Comput., 1976, 10–22 | MR | Zbl

[3] Du D. Z., Hwang F. K., “A New Bound for the Steiner Ratio”, Trans. Amer. Math. Soc., 278:1 (1983), 137–148 | DOI | MR | Zbl

[4] Du D. Z., Hwang F. K., Chao S. C., “Steiner minimal trees for points on a circle”, Proc. Amer. Math. Soc., 95:4 (1985), 613–618 | DOI | MR | Zbl

[5] Du D. Z., Hwang F. K., Weng J. F., “Steiner minimal trees for points on a zig-zag lines”, Trans. Amer. Math. Soc., 278:1 (1983), 149–156 | DOI | MR | Zbl

[6] Hildebrandt S., Tromba A., Mathematics and optimal form, Scientific American Books, Inc., N.Y., 1984 | MR

[7] Shklyanko I. V., “Odnomernaya zadacha Plato na poverkhnostyakh”, Vestnik MGU. Ser. matem., 1989, no. 3, 8–11 | MR | Zbl

[8] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl

[9] Ivanov A. O., Tuzhilin A. A., “O deformatsii mnogoobraziya, umenshayuschei ob'em s maksimalnoi skorostyu”, Vestnik MGU. Ser. Matem., 1989, no. 3, 14–18 | MR | Zbl

[10] Ivanov A. O., Tuzhilin A. A., “Reshenie zadachi Shteinera dlya vypuklykh granits”, UMN, 45:2 (1990), 207–208 | Zbl

[11] Ivanov A. O., Tuzhilin A. A., “Zadacha Shteinera dlya vypuklykh granits ili ploskie minimalnye seti”, Matem. sb., 182:12 (1991), 1813–1844 | MR

[12] Fomenko A. T., Topologicheskie variatsionnye zadachi, Izd-vo MGU, M., 1984 | MR | Zbl

[13] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR | Zbl

[14] Edmonds A. L., Ewing J. H., Kulkarni R. S., “Regular tesselations of surfaces and $(p,q,2)$-triangle groups”, Ann. Math., 116 (1982), 113–132 | DOI | MR | Zbl

[15] Edmonds A. L., Ewing J. H., Kulkarni R. S., “Torsion free subgroups of Fuchian groups and tesselations of surfaces”, Inv. Math., 69 (1982), 331–346 | DOI | MR | Zbl

[16] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[17] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991 | MR

[18] Leng S., Vvedenie v teoriyu modulyarnykh form, Mir, M., 1979 | MR