Weighted Fourier–Laplace transforms of analytic functionals on the disk
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 385-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the question as to whether the space $\widehat L_2^a(D,\mu)$ has a norm of the form $$ \|\widehat f\|_\nu =\int_0^\infty\!\!\!\int_0^{2\pi}|\widehat f(xe^{i\theta})|^2\,d\nu (xe^{i\theta}), $$ equivalent to the norm $$ \|\widehat f\|_{\widehat L_2^a(D,\mu)}\stackrel{\mathrm{def}}= \|f\|_{L_2^a(D,\mu)}. $$ where $\nu$ is a nonnegative Borel measure on $\mathbb C$.
@article{SM_1994_77_2_a8,
     author = {V. V. Napalkov and R. S. Yulmukhametov},
     title = {Weighted {Fourier{\textendash}Laplace} transforms of analytic functionals on the~disk},
     journal = {Sbornik. Mathematics},
     pages = {385--390},
     year = {1994},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a8/}
}
TY  - JOUR
AU  - V. V. Napalkov
AU  - R. S. Yulmukhametov
TI  - Weighted Fourier–Laplace transforms of analytic functionals on the disk
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 385
EP  - 390
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a8/
LA  - en
ID  - SM_1994_77_2_a8
ER  - 
%0 Journal Article
%A V. V. Napalkov
%A R. S. Yulmukhametov
%T Weighted Fourier–Laplace transforms of analytic functionals on the disk
%J Sbornik. Mathematics
%D 1994
%P 385-390
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a8/
%G en
%F SM_1994_77_2_a8
V. V. Napalkov; R. S. Yulmukhametov. Weighted Fourier–Laplace transforms of analytic functionals on the disk. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 385-390. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a8/

[1] Yulmukhametov R. S., “Prostranstva analiticheskikh funktsii, imeyuschikh zadannyi rost vblizi granitsy”, Matem. zametki, 32:1 (1982), 41–57 | MR | Zbl

[2] Napalkov V. V., “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Seriya matem., 51:2 (1987), 287–305 | MR | Zbl

[3] Saiton S., “Fourier–Laplace transforms and Bergman spaces on the tube domains”, Math. vesn., 38:4 (1984), 571–586 | MR

[4] Genchev T. G., “Entire functions of exponential type with polynomial growth on $R_x^n$”, J. Math. Anal. Appl., 60:1 (1977), 103–119 | DOI | MR | Zbl

[5] Saiton S., “Fourier–Laplace transforms and Bergman spaces”, Proc. Amer. Math. Soc., 102:2 (1988), 985–992 | DOI | MR

[6] Lyubarskii Yu. I., “Teorema Vinera–Peli dlya vypuklykh mnozhestv”, Izv. AN ArmSSR. Matematika, 23:2 (1988), 163–172 | MR | Zbl

[7] Lutsenko V. I., Yulmukhametov R. S., “Obobschenie teoremy Peli–Vinera na vesovye prostranstva”, Matem. zametki, 48:5 (1990), 80–87 | MR