Weighted Fourier--Laplace transforms of analytic functionals on the~disk
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 385-390
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the question as to whether the space $\widehat L_2^a(D,\mu)$ has a norm of the form
$$
\|\widehat f\|_\nu =\int_0^\infty\!\!\!\int_0^{2\pi}|\widehat f(xe^{i\theta})|^2\,d\nu
(xe^{i\theta}),
$$
equivalent to the norm
$$
\|\widehat f\|_{\widehat L_2^a(D,\mu)}\stackrel{\mathrm{def}}=
\|f\|_{L_2^a(D,\mu)}.
$$
where $\nu$ is a nonnegative Borel measure on $\mathbb C$.
@article{SM_1994_77_2_a8,
author = {V. V. Napalkov and R. S. Yulmukhametov},
title = {Weighted {Fourier--Laplace} transforms of analytic functionals on the~disk},
journal = {Sbornik. Mathematics},
pages = {385--390},
publisher = {mathdoc},
volume = {77},
number = {2},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a8/}
}
TY - JOUR AU - V. V. Napalkov AU - R. S. Yulmukhametov TI - Weighted Fourier--Laplace transforms of analytic functionals on the~disk JO - Sbornik. Mathematics PY - 1994 SP - 385 EP - 390 VL - 77 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a8/ LA - en ID - SM_1994_77_2_a8 ER -
V. V. Napalkov; R. S. Yulmukhametov. Weighted Fourier--Laplace transforms of analytic functionals on the~disk. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 385-390. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a8/