Hermite–Padé approximation for Nikishin systems of analytic functions
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 367-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nikishin type systems of analytic functions are considered. For such systems, convergence of the main diagonal of the associated Hermite-Padé approximants is proved, when interpolation is equally distributed between the functions. If interpolation is 'nearly' equally distributed, then convergence in capacity takes place. Multipoint Padé approximation plays a key role in the proof.
@article{SM_1994_77_2_a7,
     author = {Zh. Bustamante and G. L\'opez Lagomasino},
     title = {Hermite{\textendash}Pad\'e approximation for {Nikishin} systems of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {367--384},
     year = {1994},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a7/}
}
TY  - JOUR
AU  - Zh. Bustamante
AU  - G. López Lagomasino
TI  - Hermite–Padé approximation for Nikishin systems of analytic functions
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 367
EP  - 384
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a7/
LA  - en
ID  - SM_1994_77_2_a7
ER  - 
%0 Journal Article
%A Zh. Bustamante
%A G. López Lagomasino
%T Hermite–Padé approximation for Nikishin systems of analytic functions
%J Sbornik. Mathematics
%D 1994
%P 367-384
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a7/
%G en
%F SM_1994_77_2_a7
Zh. Bustamante; G. López Lagomasino. Hermite–Padé approximation for Nikishin systems of analytic functions. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 367-384. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a7/

[1] Oeuvres, Tome III, Gauthier-Villa

[2] Mahler K., “Perfect systems”, Compositio Math., 19 (1968), 95–166 | MR | Zbl

[3] Coates J., “On the algebraic approximation of functions. I; II; III”, Indag. Math., Nederl. Acad. Wetensch. Proc. Ser. A69, 28, 1966, 421–434 ; 435–448 ; 449–461 | MR | Zbl

[4] Jager H., “A multidimensional generalization of the Pade table. I–VI”, Indag. Math., Nederl. Acad. Wetensch. Proc. Ser. A67, 26, 1964, 193–249 | MR

[5] Angelesco A., “Sur deux extensions des fractions continues algebriques”, C.R. Acad. Sci. Paris, 168 (1919), 262–265 | Zbl

[6] Nikishin E. M., “O sovmestnykh approksimatsiyakh Pade”, Matem. sb., 113(155) (1980), 499–519 | MR | Zbl

[7] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistemy funktsii markovskogo tipa”, Tr. MIAN, 157, Nauka, M., 1981, 609–627 | MR

[8] Gonchar A. A., “Skhodimost obobschennykh approksimatsii Pade dlya meromorfnykh funktsii”, Matem. sb., 98 (140) (1975), 564–577 | MR | Zbl

[9] Lopes G., “Usloviya skhodimosti mnogotochechnykh approksimatsii Pade dlya funktsii stiltesovskogo tipa”, Matem. sb., 107 (149) (1978), 69–83 | MR | Zbl

[10] Lopes G., “O skhodimosti approksimatsii Pade dlya meromorfnykh funktsii stiltesovskogo tipa”, Matem. sb., 111 (153) (1980), 308–316 | MR

[11] Lopes G., “Skhodimost approksimatsii Pade meromorfnykh funktsii stiltesovskogo tipa i sravnitelnaya asimptotika dlya ortogonalnykh mnogochlenov”, Matem. sb., 136(178):2(6) (1988), 206–226 | MR | Zbl

[12] Lopes G., “Sravnitelnaya asimptotika ortogonalnykh mnogochlenov na beskonechnykh intervalakh”, Matem. sb., 137(179) (1988), 500–525 | MR

[13] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[14] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[15] Nuttal J., “Asymptotics of diagonal Hermite–Pade polynomials”, J. Appr. Theory, 42 (4) (1984), 259–386 | DOI | MR

[16] Aptekarev A. I., Stahl H., “Asymptotics of Hermite–Pade polynomials”, Progress in Approximation Theory, Springer, N.-Y., 1992, 127–168 | MR