Basic spin representations of alternating groups, Gow lattices, and Barnes–Wall lattices
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 351-365 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a recent paper, R. Gow showed that in certain cases the basic spin representations of the group $2\mathfrak{A}_n$ (of degree $2^{[\frac{n}{2}]-1}$) can be rational. In such cases, the $2\mathfrak{A}_n$-invariant lattices $\Lambda$ in the corresponding rational module have many interesting properties. In the present paper all possibilities are found for the groups $G=\operatorname{Aut}(\Lambda)$. Also, a conjecture of Gow is proved: For $n=8k$, $ k\in\mathbb{N}$, there is among the $2\mathfrak{A}_n$-invariant lattices the even unimodular Barnes–Wall lattice $BW_{2^{4k-1}}$. At the same time, the rationality of the basic spin representation of $ 2\mathfrak{A}_{8k}$ and the reducibility of $\Lambda/2\Lambda$ as a $2\mathfrak{A}_{8k}$-module are proved.
@article{SM_1994_77_2_a6,
     author = {Pham Huu Tiep},
     title = {Basic spin representations of alternating groups, {Gow} lattices, and {Barnes{\textendash}Wall} lattices},
     journal = {Sbornik. Mathematics},
     pages = {351--365},
     year = {1994},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/}
}
TY  - JOUR
AU  - Pham Huu Tiep
TI  - Basic spin representations of alternating groups, Gow lattices, and Barnes–Wall lattices
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 351
EP  - 365
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/
LA  - en
ID  - SM_1994_77_2_a6
ER  - 
%0 Journal Article
%A Pham Huu Tiep
%T Basic spin representations of alternating groups, Gow lattices, and Barnes–Wall lattices
%J Sbornik. Mathematics
%D 1994
%P 351-365
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/
%G en
%F SM_1994_77_2_a6
Pham Huu Tiep. Basic spin representations of alternating groups, Gow lattices, and Barnes–Wall lattices. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 351-365. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/

[1] Schur I., “Uber die Darstellung der symmetrischen und alternierenden Gruppe durch gebrochene lineare Substitutionen”, Gesammelte Abhandlungen, Bd. 1, 346–441

[2] Gow R., “Unimodular integral lattices associated with the basic spin representations of $2A_n$ and $2S_n$”, Bull. London Math. Soc., 21 (1989), 257–262 | DOI | MR | Zbl

[3] Thompson J. G., “Finite groups and even lattices”, J. Algebra, 38 (1976), 523–524 | DOI | MR | Zbl

[4] Thompson J. G., “A simple subgroup of $E_8(3)$. Finite Groups”, Symp. N. Iwahari, Japan Soc. for Promotion of Science, 1976, 113–116

[5] Conway J. H., Curtis R. T., Norton S. P., Parken R. A., Wilson R. A., An ATLAS of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[6] Barnes E. S., Wall G. E., “Some extreme forms defined in terms of abelian groups”, J. Amer. Math. Soc., 1 (1959), 47–63 | MR | Zbl

[7] Broue M., Enguehard M., “Une familie infinie de formes quadratiques entieres”, Ann. Sci. Ecole Norm. Sup., 6 (1973), 17–52 | MR

[8] Gross B. H., “Group representations and lattices”, Invent. Math., 1991 | MR

[9] Dempwolff U., “On extensions of elementary abelian $2$-groups by $\Sigma _n$”, Glasnik Matem., 14 (34) (1979), 35–40 | MR | Zbl

[10] Kleschev A., Premet A. A., “Ob odnoi gruppe kogomologii”, 1991 (to appear)

[11] Marris A. O., “The spin representation of the symmetric group”, Proc. London. Math. Soc. (3), 12 (1962), 55–76 | DOI | MR

[12] Rasala R., “On the minimall degrees of the characters of $\frak S_n$”, J. Algebra, 45 (1977), 132–181 | DOI | MR | Zbl

[13] Wagner A., “The faithful linear representations of least degree of $S_n$ and $A_n$ over a field of characteristic 2”, Math. Z., 151 (1976), 127–137 | DOI | MR | Zbl

[14] Wagner A., “The faithful linear representations of least degree of $S_n$ and $A_n$ over a field of odd characteristic”, Math. Z., 154 (1977), 103–144 | DOI | MR

[15] Wagner A., “An observation on the degrees of projective representations of the symmetric and alternating groups over an arbitrary field”, Arch. Math., 29 (1977), 583–589 | DOI | MR | Zbl

[16] Fam Khyu Tep, “Predstavleniya Veilya konechnykh simplekticheskikh grupp i reshetki Gau”, Matem. sb., 182:8 (1991), 1177–1199

[17] Landazuri V., Seitz G. M., “On the minimall degrees of projective representations of the finite Chevalley groups”, J. Algebra, 32 (1974), 418–443 | DOI | MR | Zbl

[18] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, London Math. Soc. Lecture Note Series, 129, Cambridge Univ. Press, 1990 | MR | Zbl

[19] Dye R. H., “Alternating groups as maximal subgroups of the special orthogonal groups over the field of two elements”, J. Algebra, 71 (1981), 472–480 | DOI | MR | Zbl

[20] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl

[21] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR