@article{SM_1994_77_2_a6,
author = {Pham Huu Tiep},
title = {Basic spin representations of alternating groups, {Gow} lattices, and {Barnes{\textendash}Wall} lattices},
journal = {Sbornik. Mathematics},
pages = {351--365},
year = {1994},
volume = {77},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/}
}
Pham Huu Tiep. Basic spin representations of alternating groups, Gow lattices, and Barnes–Wall lattices. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 351-365. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/
[1] Schur I., “Uber die Darstellung der symmetrischen und alternierenden Gruppe durch gebrochene lineare Substitutionen”, Gesammelte Abhandlungen, Bd. 1, 346–441
[2] Gow R., “Unimodular integral lattices associated with the basic spin representations of $2A_n$ and $2S_n$”, Bull. London Math. Soc., 21 (1989), 257–262 | DOI | MR | Zbl
[3] Thompson J. G., “Finite groups and even lattices”, J. Algebra, 38 (1976), 523–524 | DOI | MR | Zbl
[4] Thompson J. G., “A simple subgroup of $E_8(3)$. Finite Groups”, Symp. N. Iwahari, Japan Soc. for Promotion of Science, 1976, 113–116
[5] Conway J. H., Curtis R. T., Norton S. P., Parken R. A., Wilson R. A., An ATLAS of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[6] Barnes E. S., Wall G. E., “Some extreme forms defined in terms of abelian groups”, J. Amer. Math. Soc., 1 (1959), 47–63 | MR | Zbl
[7] Broue M., Enguehard M., “Une familie infinie de formes quadratiques entieres”, Ann. Sci. Ecole Norm. Sup., 6 (1973), 17–52 | MR
[8] Gross B. H., “Group representations and lattices”, Invent. Math., 1991 | MR
[9] Dempwolff U., “On extensions of elementary abelian $2$-groups by $\Sigma _n$”, Glasnik Matem., 14 (34) (1979), 35–40 | MR | Zbl
[10] Kleschev A., Premet A. A., “Ob odnoi gruppe kogomologii”, 1991 (to appear)
[11] Marris A. O., “The spin representation of the symmetric group”, Proc. London. Math. Soc. (3), 12 (1962), 55–76 | DOI | MR
[12] Rasala R., “On the minimall degrees of the characters of $\frak S_n$”, J. Algebra, 45 (1977), 132–181 | DOI | MR | Zbl
[13] Wagner A., “The faithful linear representations of least degree of $S_n$ and $A_n$ over a field of characteristic 2”, Math. Z., 151 (1976), 127–137 | DOI | MR | Zbl
[14] Wagner A., “The faithful linear representations of least degree of $S_n$ and $A_n$ over a field of odd characteristic”, Math. Z., 154 (1977), 103–144 | DOI | MR
[15] Wagner A., “An observation on the degrees of projective representations of the symmetric and alternating groups over an arbitrary field”, Arch. Math., 29 (1977), 583–589 | DOI | MR | Zbl
[16] Fam Khyu Tep, “Predstavleniya Veilya konechnykh simplekticheskikh grupp i reshetki Gau”, Matem. sb., 182:8 (1991), 1177–1199
[17] Landazuri V., Seitz G. M., “On the minimall degrees of projective representations of the finite Chevalley groups”, J. Algebra, 32 (1974), 418–443 | DOI | MR | Zbl
[18] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, London Math. Soc. Lecture Note Series, 129, Cambridge Univ. Press, 1990 | MR | Zbl
[19] Dye R. H., “Alternating groups as maximal subgroups of the special orthogonal groups over the field of two elements”, J. Algebra, 71 (1981), 472–480 | DOI | MR | Zbl
[20] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl
[21] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR