Basic spin representations of alternating groups, Gow lattices, and Barnes--Wall lattices
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 351-365
Voir la notice de l'article provenant de la source Math-Net.Ru
In a recent paper, R. Gow showed that in certain cases the basic spin representations of the group $2\mathfrak{A}_n$ (of degree $2^{[\frac{n}{2}]-1}$) can be rational. In such cases, the $2\mathfrak{A}_n$-invariant lattices $\Lambda$ in the corresponding rational module have many interesting properties. In the present paper all possibilities are found for the groups $G=\operatorname{Aut}(\Lambda)$. Also, a conjecture of Gow is proved: For
$n=8k$, $ k\in\mathbb{N}$, there is among the $2\mathfrak{A}_n$-invariant lattices the even unimodular Barnes–Wall lattice $BW_{2^{4k-1}}$. At the same time, the rationality of the basic spin representation of $ 2\mathfrak{A}_{8k}$ and the reducibility of $\Lambda/2\Lambda$ as a $2\mathfrak{A}_{8k}$-module are proved.
@article{SM_1994_77_2_a6,
author = {Pham Huu Tiep},
title = {Basic spin representations of alternating groups, {Gow} lattices, and {Barnes--Wall} lattices},
journal = {Sbornik. Mathematics},
pages = {351--365},
publisher = {mathdoc},
volume = {77},
number = {2},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/}
}
Pham Huu Tiep. Basic spin representations of alternating groups, Gow lattices, and Barnes--Wall lattices. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 351-365. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/