Basic spin representations of alternating groups, Gow lattices, and Barnes--Wall lattices
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 351-365

Voir la notice de l'article provenant de la source Math-Net.Ru

In a recent paper, R. Gow showed that in certain cases the basic spin representations of the group $2\mathfrak{A}_n$ (of degree $2^{[\frac{n}{2}]-1}$) can be rational. In such cases, the $2\mathfrak{A}_n$-invariant lattices $\Lambda$ in the corresponding rational module have many interesting properties. In the present paper all possibilities are found for the groups $G=\operatorname{Aut}(\Lambda)$. Also, a conjecture of Gow is proved: For $n=8k$, $ k\in\mathbb{N}$, there is among the $2\mathfrak{A}_n$-invariant lattices the even unimodular Barnes–Wall lattice $BW_{2^{4k-1}}$. At the same time, the rationality of the basic spin representation of $ 2\mathfrak{A}_{8k}$ and the reducibility of $\Lambda/2\Lambda$ as a $2\mathfrak{A}_{8k}$-module are proved.
@article{SM_1994_77_2_a6,
     author = {Pham Huu Tiep},
     title = {Basic spin representations of alternating groups, {Gow} lattices, and {Barnes--Wall} lattices},
     journal = {Sbornik. Mathematics},
     pages = {351--365},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/}
}
TY  - JOUR
AU  - Pham Huu Tiep
TI  - Basic spin representations of alternating groups, Gow lattices, and Barnes--Wall lattices
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 351
EP  - 365
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/
LA  - en
ID  - SM_1994_77_2_a6
ER  - 
%0 Journal Article
%A Pham Huu Tiep
%T Basic spin representations of alternating groups, Gow lattices, and Barnes--Wall lattices
%J Sbornik. Mathematics
%D 1994
%P 351-365
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/
%G en
%F SM_1994_77_2_a6
Pham Huu Tiep. Basic spin representations of alternating groups, Gow lattices, and Barnes--Wall lattices. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 351-365. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a6/