On the theory of infinite-dimensional superspace: reflexive Banach supermodules
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 331-350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of reflexive Banach supermodules of sequences of elements of a supercommutative Banach superalgebra. The theory of Hilbert supermodules, introduced as isomorphic to the supermodule $l_2(\Lambda)$, is of greatest interest for applications. An analogue of the Riesz theorem on representation of a continuous $\Lambda$-linear functional is proved for Hilbert supermodules.
@article{SM_1994_77_2_a5,
     author = {A. Yu. Khrennikov},
     title = {On the theory of infinite-dimensional superspace: reflexive {Banach} supermodules},
     journal = {Sbornik. Mathematics},
     pages = {331--350},
     year = {1994},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a5/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - On the theory of infinite-dimensional superspace: reflexive Banach supermodules
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 331
EP  - 350
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a5/
LA  - en
ID  - SM_1994_77_2_a5
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T On the theory of infinite-dimensional superspace: reflexive Banach supermodules
%J Sbornik. Mathematics
%D 1994
%P 331-350
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a5/
%G en
%F SM_1994_77_2_a5
A. Yu. Khrennikov. On the theory of infinite-dimensional superspace: reflexive Banach supermodules. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 331-350. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a5/

[1] Vladimirov V. S, Volovich I. V., “Superanaliz. 1: Differentsialnoe ischislenie”, TMF, 59:1 (1984), 3–27 | MR | Zbl

[2] Vladimirov V. S, Volovich I. V., “Superanaliz. 2: Integralnoe ischislenie”, TMF, 60:2 (1984), 169–198 | MR | Zbl

[3] De Witt B. S., Supermanifolds, U.P., Cambridge, 1984

[4] Rogers A., “Super Lie groups: global topology and local structure”, J. Math. Phys., 21:6 (1980), 724–731 | DOI | MR

[5] Rogers A., “A global theory of supermanifolds”, J. Math. Phys., 22:5 (1981), 939–945 | DOI | MR | Zbl

[6] Khrennikov A. Yu., “Funktsionalnyi superanaliz”, UMN, 43:2 (1988), 87–114 | MR | Zbl

[7] Salam A., Strathdee F., “Super-gauge transformations”, Nucl. Phys. B, 76:3 (1974), 477–482 | DOI | MR

[8] Martin J. L., “Generalized classical dynamics and the “classical analogue” of Fermi oscillator”, Proc. Roy. Soc., A-251:1267 (1959), 533–543 | MR

[9] Martin J. L., “The Feynman principle for a Fermi system”, Proc. Roy. Soc., A-251:1267 (1959), 543–549 | MR | Zbl

[10] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[11] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR

[12] Khrennikov A. Yu., “Superanaliz: teoriya obobschennykh funktsii i psevdodifferentsialnykh operatorov”, TMF, 73:3 (1987), 420–429 | MR | Zbl

[13] Khrennikov A. Yu., “Uravneniya na superprostranstve”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 556–606

[14] Khrennikov A. Yu., “Predelnye teoremy teorii veroyatnostei na superprostranstve”, Teoriya veroyatnostei i ee primeneniya, 35:3 (1990), 599–602 | MR

[15] Khrennikov A. Yu., “Formuly integrirovaniya po chastyam dlya feinmanovskikh i gaussovskikh raspredelenii na superprostranstve”, Izv. vuzov. Matematika, 1990, no. 4, 51–58 | MR | Zbl

[16] Khrennikov A. Yu., “Psevdodifferentsialnye uravneniya v funktsionalnom superanalize. 1: Metod preobrazovaniya Fure”, Differents. uravneniya, 24:12 (1988), 1712–1723 | MR

[17] Khrennikov A. Yu., “Psevdodifferentsialnye uravneniya v funktsionalnom superanalize. 2: Formula Feinmana-Katsa”, Differents. uravneniya, 25:2 (1989), 314–324 | MR

[18] Khrennikov A. Yu., “Obobschennye funktsii na nearkhimedovom superprostranstve”, Izv. AN SSSR. Ser. matem., 55:6 (1991), 1257–1286

[19] Edvards R., Funktsionalnyi analiz, Mir, M., 1968

[20] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[21] Nagamachi S., Kobayashi Yu., Hilbert superspace, Preprint Tokushima Univ., 1990 | MR

[22] Khrennikov A. Yu., “Psevdotopologicheskie kommutativnye superalgebry s nilpotentnymi chetnymi dukhami”, Matem. zametki, 48:2 (1990), 114–122 | MR | Zbl

[23] Hoyos F., Quiros M., Ramires J., Mittelbrunn F., Urries F. J., “Generalized supermanifolds”, J. Math. Phys., 25:4 (1984), 833–854 | DOI | MR | Zbl

[24] Ktitarev D. V., “Functional integral and the Feynman-Kac formula in superspace”, Lett. Math. Phys., 18 (1989), 325–331 | DOI | MR | Zbl

[25] Ktitarev D. V., “Functional integral in supersymmetric quantum mechanics”, Lett. Math. Phys., 20 (1990), 309–312 | DOI | MR | Zbl

[26] Nagamachi S., Kobayashi Yu., “Analysis on generalized superspace”, J. Math. Phys., 27:9 (1986), 2247–2256 | DOI | MR | Zbl

[27] Nagamachi S., Kobayashi Yu., “Superdistributions”, Lett. Math. Phys., 15 (1988), 17–22 | DOI | MR

[28] Nagamachi S., Kobayashi Yu., “Generalized complex superspace-involutions of superfields”, J. Math. Phys., 28:8 (1987), 1700–1708 | DOI | MR | Zbl

[29] Nagamachi S., Kobayashi Yu., Axioms of supersymmetric quantum fields, Preprint Tokushima Univ., 1990

[30] Ivaschuk V. D., “Ob annulyatorakh v beskonechnomernykh banakhovykh algebrakh Grassmana”, TMF, 79:1 (1990), 31–40 | MR

[31] Bruzzo U., Cianci R., “Banach-Grassmann algebras and spinor formalism”, Bill. U.M.I., 2-A:6 (1983), 193–201 | MR | Zbl

[32] Bruzzo U., Cianci R., “The Banach-Lie Structure of the granded Poincaré group”, Bill. U.M.I., 3-B:6 (1984), 199–209 | MR

[33] Bruzzo U., Cianci R., “On the structure of superfields in a field theory on supermanifold”, Lett. Math. Phys., 11 (1986), 21–26 | DOI | MR

[34] Aref'eva I. Ya., Volovich I. V., “Quantum group gauge fields”, Modern Phys. Lett. A, 6:10 (1991), 893–907 | DOI | MR | Zbl

[35] Khrennikov A. Yu., “Nekommutativnoe differentsialnoe ischislenie i proektivnye tenzornye proizvedeniya nekommutativnykh banakhovykh algebr”, DAN SSSR, 321:4 (1991), 722–726 | Zbl