On the theory of infinite-dimensional superspace: reflexive Banach supermodules
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 331-350
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of reflexive Banach supermodules of sequences of elements of a supercommutative Banach superalgebra. The theory of Hilbert supermodules, introduced as isomorphic to the supermodule $l_2(\Lambda)$, is of greatest interest for applications. An analogue of the Riesz theorem on representation of a continuous $\Lambda$-linear functional is proved for Hilbert supermodules.
@article{SM_1994_77_2_a5,
author = {A. Yu. Khrennikov},
title = {On the theory of infinite-dimensional superspace: reflexive {Banach} supermodules},
journal = {Sbornik. Mathematics},
pages = {331--350},
publisher = {mathdoc},
volume = {77},
number = {2},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a5/}
}
A. Yu. Khrennikov. On the theory of infinite-dimensional superspace: reflexive Banach supermodules. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 331-350. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a5/