On the theory of infinite-dimensional superspace: reflexive Banach supermodules
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 331-350

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of reflexive Banach supermodules of sequences of elements of a supercommutative Banach superalgebra. The theory of Hilbert supermodules, introduced as isomorphic to the supermodule $l_2(\Lambda)$, is of greatest interest for applications. An analogue of the Riesz theorem on representation of a continuous $\Lambda$-linear functional is proved for Hilbert supermodules.
@article{SM_1994_77_2_a5,
     author = {A. Yu. Khrennikov},
     title = {On the theory of infinite-dimensional superspace: reflexive {Banach} supermodules},
     journal = {Sbornik. Mathematics},
     pages = {331--350},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a5/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - On the theory of infinite-dimensional superspace: reflexive Banach supermodules
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 331
EP  - 350
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a5/
LA  - en
ID  - SM_1994_77_2_a5
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T On the theory of infinite-dimensional superspace: reflexive Banach supermodules
%J Sbornik. Mathematics
%D 1994
%P 331-350
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a5/
%G en
%F SM_1994_77_2_a5
A. Yu. Khrennikov. On the theory of infinite-dimensional superspace: reflexive Banach supermodules. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 331-350. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a5/