Infinite-parameter families of solutions of nonlinear differential equations
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 303-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Bäcklund transformation of a nonlinear equation and additional invariance of it under a contact transformation permit the construction of a family of solutions depending on an arbitrary number of parameters. Boundary value problems are solved by choosing the parameters and the initial solution.
@article{SM_1994_77_2_a3,
     author = {S. V. Khabirov},
     title = {Infinite-parameter families of solutions of nonlinear differential equations},
     journal = {Sbornik. Mathematics},
     pages = {303--311},
     year = {1994},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a3/}
}
TY  - JOUR
AU  - S. V. Khabirov
TI  - Infinite-parameter families of solutions of nonlinear differential equations
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 303
EP  - 311
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a3/
LA  - en
ID  - SM_1994_77_2_a3
ER  - 
%0 Journal Article
%A S. V. Khabirov
%T Infinite-parameter families of solutions of nonlinear differential equations
%J Sbornik. Mathematics
%D 1994
%P 303-311
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a3/
%G en
%F SM_1994_77_2_a3
S. V. Khabirov. Infinite-parameter families of solutions of nonlinear differential equations. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 303-311. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a3/

[1] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M, 1983 | MR

[2] Khabirov S. V., “Metod differentsialnykh podstanovok v reshenii kraevykh zadach”, Differentsialnye uravneniya s chastnymi proizvodnymi, In-t matem. SO AN SSSR, Novosibirsk, 1987, 113–131 | MR

[3] Khabirov S. V., “Resheniya evolyutsionnykh uravnenii vtorogo poryadka, poluchennye s pomoschyu differentsialnykh podstanovok”, Dinamika sploshnoi sredy, 85, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1988, 146–161 | MR

[4] Khabirov S. V., “Klassifikatsiya preobrazovanii Beklunda pervogo poryadka dlya evolyutsionnykh uravnenii tretego poryadka s postoyannoi separantoi”, ZhVM i MF, 25:7 (1985), 1039–1049 | MR | Zbl

[5] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M, 1978 | MR