On the type of entire and meromorphic functions
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 293-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A sharp estimate is obtained for the infimum of the types of the entire functions $f$ vanishing on a sequence $\Lambda$ when the averaged counting function $ N(r,\,\Lambda)$ of the sequence has known type, and a best possible estimate is obtained for the types of the entire functions $g$ and $h$ in a representation of a meromorphic function $f=g/h$ when the Nevanlinna characteristic $T(r,\, f)$ has known type.
@article{SM_1994_77_2_a2,
     author = {B. N. Khabibullin},
     title = {On the type of entire and meromorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {293--301},
     year = {1994},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a2/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - On the type of entire and meromorphic functions
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 293
EP  - 301
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a2/
LA  - en
ID  - SM_1994_77_2_a2
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T On the type of entire and meromorphic functions
%J Sbornik. Mathematics
%D 1994
%P 293-301
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a2/
%G en
%F SM_1994_77_2_a2
B. N. Khabibullin. On the type of entire and meromorphic functions. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 293-301. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a2/

[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[2] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[3] Govorov N. V., “O gipoteze Peili”, Funktsion. analiz i ego pril., 3:2 (1956), 41–45 | MR

[4] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986 | MR | Zbl

[5] Petrenko V. P., “Rost meromorfnykh funktsii konechnogo nizhnego poryadka”, Izv. AN SSSR. Ser.matem., 33 (1969), 414 – 454 | MR | Zbl

[6] Dahlberg B., “Mean values of subharmonic functions”, Arkiv for Mat., 10 (1972), 293–309 | DOI | MR | Zbl

[7] Essen M. R., “The $\cos {\pi \lambda } $ theorems”, Lect. Notes in Math., 467, 1975, 1–98 | MR

[8] Koosis P., “La plus petite majorante surharmonique et son rapport aves l'existence des fonctions entiéres de type exponentiel jouant le rôle de multiplicateurs”, Ann. Inst. Fourier, 33:1 (1983), 67–107 | MR | Zbl

[9] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Analysis Math., 11:3 (1985), 257–282 | DOI | MR | Zbl

[10] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[11] Khabibullin B. N., “O malosti rosta na mnimoi osi tselykh funktsii eksponentsialnogo tipa s zadannymi nulyami”, Matem. zametki, 43:5 (1988), 644–650 | MR

[12] Khabibullin B. N., “Sravnenie subgarmonicheskikh funktsii po ikh assotsiirovannym meram”, Matem. sb., 125:4 (1984), 522–538 | MR | Zbl