Adding relations to instanton homology groups of Seifert fibered homology spheres
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 497-510 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on a study of the instanton homology groups $I_*$ of splicings and connected sums, a simple algorithm is obtained for computing $I_*$ for Seifert spheres.
@article{SM_1994_77_2_a14,
     author = {N. N. Savel'ev},
     title = {Adding relations to instanton homology groups of {Seifert} fibered homology spheres},
     journal = {Sbornik. Mathematics},
     pages = {497--510},
     year = {1994},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a14/}
}
TY  - JOUR
AU  - N. N. Savel'ev
TI  - Adding relations to instanton homology groups of Seifert fibered homology spheres
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 497
EP  - 510
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a14/
LA  - en
ID  - SM_1994_77_2_a14
ER  - 
%0 Journal Article
%A N. N. Savel'ev
%T Adding relations to instanton homology groups of Seifert fibered homology spheres
%J Sbornik. Mathematics
%D 1994
%P 497-510
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a14/
%G en
%F SM_1994_77_2_a14
N. N. Savel'ev. Adding relations to instanton homology groups of Seifert fibered homology spheres. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 497-510. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a14/

[1] Floer A., “An instanton – invariant for 3-manifolds”, Comm. Math. Ph., 118:2 (1988), 215–240 | DOI | MR | Zbl

[2] Fintushel R., Stern R., “Instanton homology groups of Seifert fibered homology spheres”, Proc. London Math. Soc. Ser. 3, 61:1 (1990), 109–137 | DOI | MR | Zbl

[3] Fintushel R., Stern R., “Pseudofree orbifolds”, Ann. Math. Ser. 2, 122:2 (1985), 335–364 | DOI | MR | Zbl

[4] Floer A., Instanton homology and Dehn surgery, Preprint, Courant Inst. Math. Sc., New York, 1988 | MR

[5] Newmann W., Raymond F., Seifert manifilds, plumbing, $\mu $-invariant and orientation reversing maps, Lect. Notes in Math., 664, Springer, Berlin, 1977

[6] Kirk P., Klassen E., “Representation spaces of Seifert fibered homology spheres”, Topology, 30:1 (1991), 77–95 | DOI | MR | Zbl

[7] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and riemannian geometry, I”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 43–69 | DOI | MR | Zbl

[8] Atiyah M., Hitchin N., Singer I., “Self-duality in four-dimensional riemannian geometry”, Proc. R. Soc. London A, 362 (1978), 425–461 | DOI | MR | Zbl

[9] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and riemannian geometry, II”, Math. Proc. Cambridge Phil. Soc., 78:3 (1975), 405–432 | DOI | MR | Zbl

[10] Neumann W., Wall J., “Casson invariant of link of singularities”, Comm. Math. Helv., 65:1 (1990), 58–78 | DOI | MR | Zbl

[11] Braam P., Floer homology groups for homology three-spheres, Preprint, Merton College, Oxford, 1988 | MR

[12] Fukuhara S., Maruyama N., “A sum formula for Casson's $\lambda $-invariant”, Tokyo J. Math., 11:2 (1988), 281–287 | MR | Zbl