@article{SM_1994_77_2_a14,
author = {N. N. Savel'ev},
title = {Adding relations to instanton homology groups of {Seifert} fibered homology spheres},
journal = {Sbornik. Mathematics},
pages = {497--510},
year = {1994},
volume = {77},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a14/}
}
N. N. Savel'ev. Adding relations to instanton homology groups of Seifert fibered homology spheres. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 497-510. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a14/
[1] Floer A., “An instanton – invariant for 3-manifolds”, Comm. Math. Ph., 118:2 (1988), 215–240 | DOI | MR | Zbl
[2] Fintushel R., Stern R., “Instanton homology groups of Seifert fibered homology spheres”, Proc. London Math. Soc. Ser. 3, 61:1 (1990), 109–137 | DOI | MR | Zbl
[3] Fintushel R., Stern R., “Pseudofree orbifolds”, Ann. Math. Ser. 2, 122:2 (1985), 335–364 | DOI | MR | Zbl
[4] Floer A., Instanton homology and Dehn surgery, Preprint, Courant Inst. Math. Sc., New York, 1988 | MR
[5] Newmann W., Raymond F., Seifert manifilds, plumbing, $\mu $-invariant and orientation reversing maps, Lect. Notes in Math., 664, Springer, Berlin, 1977
[6] Kirk P., Klassen E., “Representation spaces of Seifert fibered homology spheres”, Topology, 30:1 (1991), 77–95 | DOI | MR | Zbl
[7] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and riemannian geometry, I”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 43–69 | DOI | MR | Zbl
[8] Atiyah M., Hitchin N., Singer I., “Self-duality in four-dimensional riemannian geometry”, Proc. R. Soc. London A, 362 (1978), 425–461 | DOI | MR | Zbl
[9] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and riemannian geometry, II”, Math. Proc. Cambridge Phil. Soc., 78:3 (1975), 405–432 | DOI | MR | Zbl
[10] Neumann W., Wall J., “Casson invariant of link of singularities”, Comm. Math. Helv., 65:1 (1990), 58–78 | DOI | MR | Zbl
[11] Braam P., Floer homology groups for homology three-spheres, Preprint, Merton College, Oxford, 1988 | MR
[12] Fukuhara S., Maruyama N., “A sum formula for Casson's $\lambda $-invariant”, Tokyo J. Math., 11:2 (1988), 281–287 | MR | Zbl