The structure of the~congruence kernel for~$\mathrm{SL}_2$ in the~case of a~global field of positive characteristic
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 489-495

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the following description of the congruence kernel $C(\mathrm{SL}_2,\mathcal O)$ is given, where $\mathcal O$ is the coordinate ring of an affine curve obtained by removing a point from a projective curve over a finite field $k_0$. Theorem. {\it $C(\mathrm{SL}_2,\mathcal O)=(*_{x\in X}H_x)*P$ is the free profinite product over a separable space $X$ of groups $H_x$ that are isomorphic to the direct product $\prod\mathbb{Z}/p\mathbb{Z}$ of a continuum of groups of order $p=\operatorname{char}(k_0)$, and a separable projective group $P$ each of whose open subgroups is free. } The proof uses a general result on normal subgroups of free profinite products.
@article{SM_1994_77_2_a13,
     author = {P. A. Zalesskii},
     title = {The structure of the~congruence kernel for~$\mathrm{SL}_2$ in the~case of a~global field of positive characteristic},
     journal = {Sbornik. Mathematics},
     pages = {489--495},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a13/}
}
TY  - JOUR
AU  - P. A. Zalesskii
TI  - The structure of the~congruence kernel for~$\mathrm{SL}_2$ in the~case of a~global field of positive characteristic
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 489
EP  - 495
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a13/
LA  - en
ID  - SM_1994_77_2_a13
ER  - 
%0 Journal Article
%A P. A. Zalesskii
%T The structure of the~congruence kernel for~$\mathrm{SL}_2$ in the~case of a~global field of positive characteristic
%J Sbornik. Mathematics
%D 1994
%P 489-495
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a13/
%G en
%F SM_1994_77_2_a13
P. A. Zalesskii. The structure of the~congruence kernel for~$\mathrm{SL}_2$ in the~case of a~global field of positive characteristic. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 489-495. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a13/