On Zeeman's filtration in homology
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 477-488
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a finite complex $K$, Zeeman constructed a spectral sequence, converging to the homology of the complex, of the form $E_2^{pq}=H^q(K;\mathcal H_p)\Rightarrow H_{p-q}(K)$. Special attention was given to the corresponding filtration in the homology of $K$, essentially dependent on the cohomology:
\begin{gather*}
H_r(K)=F^0H_r(K)\supset F^1H_r(K)\supset\dots\supset F^qH_r(K)\supset \dots,    
\\
E_\infty^{pq}=F^qH_r(K)/F^{q+1}H_r(K),\qquad 
r=p-q,
\end{gather*}
where $\mathcal H_p$ is the coefficient system determined by the local homology groups 
$H_p^x=H_p(K,\,K\setminus x)$.
The object of the present paper is to show that the Zeeman filtration, although defined in terms of the simplicial structure of the complex, is, in the end, of a general-categorical nature. Due to this fact, a more complete description of its connection with the topology of the space and with the product is obtained.
			
            
            
            
          
        
      @article{SM_1994_77_2_a12,
     author = {E. G. Sklyarenko},
     title = {On {Zeeman's} filtration in homology},
     journal = {Sbornik. Mathematics},
     pages = {477--488},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a12/}
}
                      
                      
                    E. G. Sklyarenko. On Zeeman's filtration in homology. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 477-488. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a12/
