On Zeeman's filtration in homology
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 477-488

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite complex $K$, Zeeman constructed a spectral sequence, converging to the homology of the complex, of the form $E_2^{pq}=H^q(K;\mathcal H_p)\Rightarrow H_{p-q}(K)$. Special attention was given to the corresponding filtration in the homology of $K$, essentially dependent on the cohomology: \begin{gather*} H_r(K)=F^0H_r(K)\supset F^1H_r(K)\supset\dots\supset F^qH_r(K)\supset \dots, \\ E_\infty^{pq}=F^qH_r(K)/F^{q+1}H_r(K),\qquad r=p-q, \end{gather*} where $\mathcal H_p$ is the coefficient system determined by the local homology groups $H_p^x=H_p(K,\,K\setminus x)$. The object of the present paper is to show that the Zeeman filtration, although defined in terms of the simplicial structure of the complex, is, in the end, of a general-categorical nature. Due to this fact, a more complete description of its connection with the topology of the space and with the product is obtained.
@article{SM_1994_77_2_a12,
     author = {E. G. Sklyarenko},
     title = {On {Zeeman's} filtration in homology},
     journal = {Sbornik. Mathematics},
     pages = {477--488},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a12/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - On Zeeman's filtration in homology
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 477
EP  - 488
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a12/
LA  - en
ID  - SM_1994_77_2_a12
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T On Zeeman's filtration in homology
%J Sbornik. Mathematics
%D 1994
%P 477-488
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a12/
%G en
%F SM_1994_77_2_a12
E. G. Sklyarenko. On Zeeman's filtration in homology. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 477-488. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a12/