On entire radial solutions of some quasilinear elliptic equations
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 265-277

Voir la notice de l'article provenant de la source Math-Net.Ru

Equations of the form $$ \Delta u+K(|x|)|u|^{p-2}u=h(|x|),\qquad x\in \mathbb R^N,\quad N\geslant 3, $$ with $p>1$ are considered in the class of real-valued radial functions. A priori and asymptotic estimates that are best possible in the class of equations under consideration are established on the basis of a new integral identity. Existence theorems are obtained for entire radial solutions.
@article{SM_1994_77_2_a0,
     author = {S. I. Pokhozhaev},
     title = {On entire radial solutions of some quasilinear elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {265--277},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a0/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On entire radial solutions of some quasilinear elliptic equations
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 265
EP  - 277
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a0/
LA  - en
ID  - SM_1994_77_2_a0
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On entire radial solutions of some quasilinear elliptic equations
%J Sbornik. Mathematics
%D 1994
%P 265-277
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a0/
%G en
%F SM_1994_77_2_a0
S. I. Pokhozhaev. On entire radial solutions of some quasilinear elliptic equations. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a0/