On entire radial solutions of some quasilinear elliptic equations
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 265-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equations of the form $$ \Delta u+K(|x|)|u|^{p-2}u=h(|x|),\qquad x\in \mathbb R^N,\quad N\geslant 3, $$ with $p>1$ are considered in the class of real-valued radial functions. A priori and asymptotic estimates that are best possible in the class of equations under consideration are established on the basis of a new integral identity. Existence theorems are obtained for entire radial solutions.
@article{SM_1994_77_2_a0,
     author = {S. I. Pokhozhaev},
     title = {On entire radial solutions of some quasilinear elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {265--277},
     year = {1994},
     volume = {77},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a0/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On entire radial solutions of some quasilinear elliptic equations
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 265
EP  - 277
VL  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_2_a0/
LA  - en
ID  - SM_1994_77_2_a0
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On entire radial solutions of some quasilinear elliptic equations
%J Sbornik. Mathematics
%D 1994
%P 265-277
%V 77
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1994_77_2_a0/
%G en
%F SM_1994_77_2_a0
S. I. Pokhozhaev. On entire radial solutions of some quasilinear elliptic equations. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a0/

[1] Berestycki H., Lions P. L., Peletier L. A., “On ODE-approach to the existence of positive solutions for semilinear problems in $\mathbb R^n $”, Indiana Univ. Math. J., 30:1 (1981), 141–157 | DOI | MR | Zbl

[2] Berestycki H., Lions P. L., “Nonlinear scalar field equations. I: Existence of a ground state”, Arch. Rat. Mech. Anal., 82:4 (1983), 313–345 | MR | Zbl

[3] Berestycki H., Lions P. L., “Nonlinear scalar field equations. II: Existence of infinitely many solution”, Arch. Rat. Mech. Anal., 82:4 (1983), 347–375 | MR | Zbl

[4] Gidas B., Spuck J., “Global and local behavior of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34 (1981), 525–598 | DOI | MR | Zbl

[5] Joseph P. P., Lundgren T. S., “Quasilinear Dirichlet problems driven by positive sources”, Arch. Rat. Mech. Anal., 49 (1972), 241–269 | MR

[6] Kusano T., Naito M., Swanson C. A., “Radial entire solutions of even order semilinear elliptic equations in the plane”, Proc. R. Soc. Edinburg, 105 (A) (1987), 275–287 | MR | Zbl

[7] Pokhozhaev S. I., “Ob ellipticheskikh zadachakh v $\mathbb R^n$ s superkriticheskim pokazatelem nelineinosti”, Matem. sb., 182:4 (1991), 467–489 | MR