On entire radial solutions of some quasilinear elliptic equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 265-277
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Equations of the form
$$
\Delta u+K(|x|)|u|^{p-2}u=h(|x|),\qquad 
x\in \mathbb R^N,\quad 
N\geslant 3,
$$
with $p>1$ are considered in the class of real-valued radial functions. A priori and asymptotic estimates that are best possible in the class of equations under consideration are established on the basis of a new integral identity. Existence theorems are obtained for entire radial solutions.
			
            
            
            
          
        
      @article{SM_1994_77_2_a0,
     author = {S. I. Pokhozhaev},
     title = {On entire radial solutions of some quasilinear elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {265--277},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_2_a0/}
}
                      
                      
                    S. I. Pokhozhaev. On entire radial solutions of some quasilinear elliptic equations. Sbornik. Mathematics, Tome 77 (1994) no. 2, pp. 265-277. http://geodesic.mathdoc.fr/item/SM_1994_77_2_a0/
