Elliptic problems with radiation conditions on edges of the boundary
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 149-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of formulations of elliptic boundary value problems connected with the addition of radiation conditions on edges of the piecewise smooth boundary $\partial G$ of a domain $G\subset\mathbb{R}^n$. Such formulations lead to Fredholm operators acting in suitable function spaces with weighted norms. The basic means of description is the generalized Green formula, which contains in addition to the usual boundary integrals also integrals over an edge $M$ of bilinear expressions formed by the coefficients of the asymptotics of the solutions near $M$. Thus, the edge and the $(n-1)$-dimensional smooth part of the boundary are on the same footing-both $M$ and $\partial G\setminus M$ are represented by their contributions to the generalized Green formula. This permits the construction of a theory of elliptic problems in which the generalized Green formula takes the role of the usual Green formula in the smooth situation.
@article{SM_1994_77_1_a9,
     author = {S. A. Nazarov and B. A. Plamenevskii},
     title = {Elliptic problems with radiation conditions on edges of the~boundary},
     journal = {Sbornik. Mathematics},
     pages = {149--176},
     year = {1994},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - B. A. Plamenevskii
TI  - Elliptic problems with radiation conditions on edges of the boundary
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 149
EP  - 176
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_1_a9/
LA  - en
ID  - SM_1994_77_1_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A B. A. Plamenevskii
%T Elliptic problems with radiation conditions on edges of the boundary
%J Sbornik. Mathematics
%D 1994
%P 149-176
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_77_1_a9/
%G en
%F SM_1994_77_1_a9
S. A. Nazarov; B. A. Plamenevskii. Elliptic problems with radiation conditions on edges of the boundary. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 149-176. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a9/

[1] Kondratev V. A., “O gladkosti resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v kusochno-gladkoi oblasti”, Differents. uravneniya, 6:10 (1970), 1831–1843 | MR | Zbl

[2] Mazya V. G., Plamenevskii B. A., “O zadache s kosoi proizvodnoi v oblasti s kusochno–gladkoi granitsei”, Funktsion. analiz i ego pril., 5:3 (1971), 102–103 | MR | Zbl

[3] Mazya V. G., “O zadache s kosoi proizvodnoi v oblasti s rebrami razlichnykh razmernostei”, Vestn. LGU. Matematika, Mekhanika, Astronomiya, 1983, no. 7, 34–39 | MR

[4] Mazya V. G., Plamenevskii B. A., “O kraevykh zadachakh dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s rebrami”, Vestn. LGU. Matematika, Mekhanika, Astronomiya, 1 (1975), 102–108 | Zbl

[5] Mazya V. G., Plamenevskii B. A., “Pervaya kraevaya zadacha dlya klassicheskikh uravnenii matematicheskoi fiziki v oblastyakh s kusochno–gladkimi granitsami. I; II”, Zeitschr. Analys ihre Anwendungen, 2:(4) (1983), 335–359 | MR

[6] Eskin G., “Boundary vaiue problems for second order elliptic equations in domains with corners”, Proc. Symp. Pure Math., 43 (1985), 105–131 | MR | Zbl

[7] Nazarov S. A., “Otsenki vblizi rebra reshenii zadachi Neimana dlya ellipticheskoi sistemy”, Vestn. LGU. Matematika, Mekhanika, Astronomiya, 1988, no. 1, 37–42 | MR | Zbl

[8] Nazarov S. A., Plamenevskii B. A., “Zadacha Neimana dlya samosopryazhennykh sistem v oblasti s kusochno-gladkoi granitsei”, Trudy Leningr. matem. o-va, 1 (1990), 174–211 | MR

[9] Kozlov V. A., “Teorema o silnom nule dlya ellipticheskoi kraevoi zadachi v ugle”, Matem. sb., 180:6 (1989), 832–849

[10] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161

[11] Mazya V. G., Plamenevskii B. A., “Ellipticheskie kraevye zadachi na mnogoobraziyakh s osobennostyami”, Problemy matematicheskogo analiza, no. 6, Izd-vo LGU, L., 1977, 85–142 | Zbl

[12] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[13] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[14] Gokhberg I. Ts., Sigal E. I., “Operatornoe obobschenie teoremy o logarifmicheskom vychete i teoremy Rushe”, Matem. sb., 84 (126) (1971), 607–629 | MR | Zbl

[15] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[16] Roitberg Ya. A., Sheftel Z. G., “Teorema o gomeomorfizmakh dlya ellipticheskikh sistem i ee prilozheniya”, Matem. sb., 78(120):3 (1969), 446–472 | MR | Zbl

[17] Maz'ya V. G., Rossmann J., “Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR