The generalized Bari theorem for the~Walsh system
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 139-147
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For Walsh series in the Paley arrangement the author proves a generalized Bari theorem on the union of sets of uniqueness, from which it follows in particular that the union of two 
$\mathcal U$-sets, one of which is simultaneously an $F_\sigma$-set and a $G_\delta$-set, is a $\mathcal U$-set, and the union of two disjoint $\mathcal U$-sets of type $G_\delta$ is again a $\mathcal U$-set. It is shown that the last two assertions hold for sets of uniqueness of those classes of series for which the principle of localization of the kernel holds.
			
            
            
            
          
        
      @article{SM_1994_77_1_a8,
     author = {N. N. Kholshchevnikova},
     title = {The generalized {Bari} theorem for {the~Walsh} system},
     journal = {Sbornik. Mathematics},
     pages = {139--147},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a8/}
}
                      
                      
                    N. N. Kholshchevnikova. The generalized Bari theorem for the~Walsh system. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 139-147. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a8/
