The generalized Bari theorem for the Walsh system
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 139-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For Walsh series in the Paley arrangement the author proves a generalized Bari theorem on the union of sets of uniqueness, from which it follows in particular that the union of two $\mathcal U$-sets, one of which is simultaneously an $F_\sigma$-set and a $G_\delta$-set, is a $\mathcal U$-set, and the union of two disjoint $\mathcal U$-sets of type $G_\delta$ is again a $\mathcal U$-set. It is shown that the last two assertions hold for sets of uniqueness of those classes of series for which the principle of localization of the kernel holds.
@article{SM_1994_77_1_a8,
     author = {N. N. Kholshchevnikova},
     title = {The generalized {Bari} theorem for {the~Walsh} system},
     journal = {Sbornik. Mathematics},
     pages = {139--147},
     year = {1994},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a8/}
}
TY  - JOUR
AU  - N. N. Kholshchevnikova
TI  - The generalized Bari theorem for the Walsh system
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 139
EP  - 147
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_1_a8/
LA  - en
ID  - SM_1994_77_1_a8
ER  - 
%0 Journal Article
%A N. N. Kholshchevnikova
%T The generalized Bari theorem for the Walsh system
%J Sbornik. Mathematics
%D 1994
%P 139-147
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_77_1_a8/
%G en
%F SM_1994_77_1_a8
N. N. Kholshchevnikova. The generalized Bari theorem for the Walsh system. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 139-147. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a8/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] Shneider A. A., “O edinstvennosti razlozhenii po sisteme funktsii Uolsha”, Matem. sb., 24(66) (1949), 279–300 | MR | Zbl

[3] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[4] Kholschevnikova N. N., “O summe menshe kontinuuma zamknutykh $\mathcal U$-mnozhestv”, Vestn. MGU. Ser. 1. Matem. mekhanika, 1981, no. 1, 51–55 | MR

[5] Kechris A., Louveau A., Descriptive set theiory and the structure of sets of uniqueness, Cambrige univ. press., 1987 | MR | Zbl

[6] Wade W. R., “Summing closed $U$-sets for Walsh series”, Proc. Amer. Math. Soc., 29:1 (1971), 123–125 | DOI | MR | Zbl

[7] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[8] Kholschevnikova N. N., “O mnozhestvakh edinstvennosti dlya ryadov po razlichnym sistemam funktsii”, Izv. AN SSSR. Seriya matem., 1992 (to appear)

[9] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966 | MR

[10] Stechkin S. B., Ulyanov P. L., “O mnozhestvakh edinstvennosti”, Izv. AN SSSR. Ser. matem., 26 (1962), 211–222 | MR | Zbl

[11] Mushegyan G. M., “O mnozhestvakh edinstvennosti dlya sistemy Khaara”, Izv. AN Arm. SSR. Seriya matem., 2:6 (1967), 350–361 | MR | Zbl