An extension principle for quasiconformal deformations of the plane
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 127-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An extension principle for quasiconformal deformations of the plane is described. The constructibility and diversity of extensions can be of interest in the solution of certain boundary value problems in mechanics. In the theory of quasiconformal mappings such extensions are interesting from the point of view of certain extremal problems in this theory.
@article{SM_1994_77_1_a7,
     author = {V. I. Semenov},
     title = {An extension principle for quasiconformal deformations of the~plane},
     journal = {Sbornik. Mathematics},
     pages = {127--137},
     year = {1994},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a7/}
}
TY  - JOUR
AU  - V. I. Semenov
TI  - An extension principle for quasiconformal deformations of the plane
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 127
EP  - 137
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_1_a7/
LA  - en
ID  - SM_1994_77_1_a7
ER  - 
%0 Journal Article
%A V. I. Semenov
%T An extension principle for quasiconformal deformations of the plane
%J Sbornik. Mathematics
%D 1994
%P 127-137
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_77_1_a7/
%G en
%F SM_1994_77_1_a7
V. I. Semenov. An extension principle for quasiconformal deformations of the plane. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a7/

[1] Reimann H. M., “Extensions of quasiconformal deformations”, Complex Analysis, Lect. Notes Math., 747, 1979 | MR

[2] Ahlfors L., “Invariant operators and integral representations in hyperbolic space”, Math. Scand., 36 (1975), 27–43 | MR | Zbl

[3] Reimann H. M., “Invariant extension of quasiconformal deformations”, Ann. Acad. Sci. Fenn. Ser. AI, 10 (1985), 477–492 | MR | Zbl

[4] Ahlfors L., “Extension of quasiconformal mapping from two to three dimensions”, Proc. Nat. Acad. Sci. USA, 51 (1964), 768–771 | DOI | MR | Zbl

[5] Kopylov A. P., “O granichnykh znacheniyakh otobrazhenii poluprostranstva, blizkikh k konformnym”, Sib. matem. zhurn., 24:5 (1983), 76–93 | MR | Zbl

[6] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR | Zbl

[7] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[8] Semenov V. I., Polugruppy nekotorykh klassov otobrazhenii oblastei evklidova prostranstva, Dis. ...kand. fiz.-mat. nauk, Novosibirsk, 1976

[9] Semenov V. I., “Kvazikonformnye potoki v prostranstvakh Mebiusa”, Matem. sb., 119 (161) (1982), 325–339 | MR | Zbl

[10] Ahlfors L., “On a class of quasiconformal mappings”, Sitz. Öster. Acad. Wiss. Math. natur. Ab. II, H.I, bis 3, 185, 1976, 5–10 | MR | Zbl

[11] Reimann H. M., “Ordinary differential equations and quasiconformal mappings”, Invent. Math., 33 (1976), 247–270 | DOI | MR | Zbl

[12] Caraman P., Homeomorfisme cvasiconforme $n$-dimensionale, Ed. acad. rep. soc. Románia, Bucuresti, 1968 | MR | Zbl

[13] Väisälä Ju., Lectures on $n$-dimensional quasiconformal mappings, Lect. Notes Math., 229, 1971 | MR

[14] Semenov V. I., “O nekotorykh dinamicheskikh sistemakh i kvazikonformnykh otobrazheniyakh”, Sib. matem. zhurn., 28:4 (1987), 196–206 | MR | Zbl

[15] Krushkal S. L., Kvazikonformnye otobrazheniya i rimanovy poverkhnosti, Nauka, Novosibirsk, 1975 | MR

[16] Tukia P., Väisälä Ju., “Quasiconformal extension from dimension $n$ to $n+1$”, Ann. Math., 115 (1982), 331–348 | DOI | MR | Zbl