Manifolds with noncoinciding inductive dimensions
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 25-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under assumption of the continuum hypothesis, there is constructed for any $n\geqslant3$ a normal countably compact manifold $M^n$ of dimension $$ n=\operatorname{ind}M^n=\dim M^n<\operatorname{Ind}M^n=2n-2. $$
@article{SM_1994_77_1_a2,
     author = {V. V. Fedorchuk and V. V. Filippov},
     title = {Manifolds with noncoinciding inductive dimensions},
     journal = {Sbornik. Mathematics},
     pages = {25--36},
     year = {1994},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a2/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
AU  - V. V. Filippov
TI  - Manifolds with noncoinciding inductive dimensions
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 25
EP  - 36
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_1_a2/
LA  - en
ID  - SM_1994_77_1_a2
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%A V. V. Filippov
%T Manifolds with noncoinciding inductive dimensions
%J Sbornik. Mathematics
%D 1994
%P 25-36
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_77_1_a2/
%G en
%F SM_1994_77_1_a2
V. V. Fedorchuk; V. V. Filippov. Manifolds with noncoinciding inductive dimensions. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 25-36. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a2/

[1] Aleksandrov P. S., Vvedenie v gomologicheskuyu teoriyu razmernosti, Nauka, M., 1975 | MR

[2] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[3] Postnikov M. M., Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl

[4] Savinov N. V., “O vpolne zamknutykh otobrazheniyakh”, Vestn. MGU. Ser.1. Matematika, mekhanika, 1975, no. 4, 39–45 | MR | Zbl

[5] Sklyarenko E. G., “O nekotorykh prilozheniyakh teorii puchkov v obschei topologii”, UMN, 19:6 (1964), 47–70 | MR | Zbl

[6] Fedorchuk V. V., “Ob otobrazheniyakh, ne ponizhayuschikh razmernost”, DAN SSSR, 187:1 (1969), 54–57

[7] Fedorchuk V. V., Proizvedeniya i spektry topologicheskikh prostranstv, T. II, Izd-vo MGU, M., 1980 | Zbl

[8] Fedorchuk V. V., “O razmernosti nigde ne plotnykh podmnozhestv mnogoobrazii”, Vestn. MGU. Ser.1. Matematika, mekhanika, 1992, no. 2, 23–28 | MR

[9] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl

[10] Chepmen T., Lektsii o $Q $-mnogoobraziyakh, Mir, M., 1981 | MR

[11] Bing R. H., “The cartesian product of a certain non-manifold and a line in $E^4 $”, Ann. Math., 70 (1959), 399–412 | DOI | MR | Zbl

[12] Brown M., “Some application of an approximation theorem for inverse limits”, Proc. AMS, 11:3 (1960), 478–483 | DOI | MR | Zbl

[13] Dowker C. H., “On countably paracompact spaces”, Canad. J. Math., 3 (1951), 219–224 | MR | Zbl

[14] Engelking R., General topology, PWN, Warszawa, 1977 | MR | Zbl