Manifolds with noncoinciding inductive dimensions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 25-36
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Under assumption of the continuum hypothesis, there is constructed for any $n\geqslant3$ a normal countably compact manifold $M^n$ of dimension
$$
n=\operatorname{ind}M^n=\dim M^n\operatorname{Ind}M^n=2n-2.  
$$
            
            
            
          
        
      @article{SM_1994_77_1_a2,
     author = {V. V. Fedorchuk and V. V. Filippov},
     title = {Manifolds with noncoinciding inductive dimensions},
     journal = {Sbornik. Mathematics},
     pages = {25--36},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a2/}
}
                      
                      
                    V. V. Fedorchuk; V. V. Filippov. Manifolds with noncoinciding inductive dimensions. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 25-36. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a2/
