Manifolds with noncoinciding inductive dimensions
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 25-36

Voir la notice de l'article provenant de la source Math-Net.Ru

Under assumption of the continuum hypothesis, there is constructed for any $n\geqslant3$ a normal countably compact manifold $M^n$ of dimension $$ n=\operatorname{ind}M^n=\dim M^n\operatorname{Ind}M^n=2n-2. $$
@article{SM_1994_77_1_a2,
     author = {V. V. Fedorchuk and V. V. Filippov},
     title = {Manifolds with noncoinciding inductive dimensions},
     journal = {Sbornik. Mathematics},
     pages = {25--36},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a2/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
AU  - V. V. Filippov
TI  - Manifolds with noncoinciding inductive dimensions
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 25
EP  - 36
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_1_a2/
LA  - en
ID  - SM_1994_77_1_a2
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%A V. V. Filippov
%T Manifolds with noncoinciding inductive dimensions
%J Sbornik. Mathematics
%D 1994
%P 25-36
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1994_77_1_a2/
%G en
%F SM_1994_77_1_a2
V. V. Fedorchuk; V. V. Filippov. Manifolds with noncoinciding inductive dimensions. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 25-36. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a2/