On decay of a solution of the first mixed problem for the linearized system of Navier–Stokes equations in a domain with noncompact boundary
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 245-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A. K. Gushchin, V. I. Ushakov, A. F. Tedeev, and other authors have investigated how stabilization rate of solutions of mixed problems for parabolic equations of second and higher orders depends on the geometry of an unbounded domain. Here an analogous problem is considered for the linearized system of Navier–Stokes equations in a domain with noncompact boundary in three-dimensional space. Estimates are obtained for the rate of decay of a solution as $t\to\infty$, in terms of a simple geometric characteristic of the unbounded domain. These estimates coincide in form with the corresponding estimates of a solution of the first mixed problem for a parabolic equation.
@article{SM_1994_77_1_a14,
     author = {F. Kh. Mukminov},
     title = {On decay of a~solution of the first mixed problem for the~linearized system of {Navier{\textendash}Stokes} equations in a~domain with noncompact boundary},
     journal = {Sbornik. Mathematics},
     pages = {245--264},
     year = {1994},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a14/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - On decay of a solution of the first mixed problem for the linearized system of Navier–Stokes equations in a domain with noncompact boundary
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 245
EP  - 264
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_1_a14/
LA  - en
ID  - SM_1994_77_1_a14
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T On decay of a solution of the first mixed problem for the linearized system of Navier–Stokes equations in a domain with noncompact boundary
%J Sbornik. Mathematics
%D 1994
%P 245-264
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_77_1_a14/
%G en
%F SM_1994_77_1_a14
F. Kh. Mukminov. On decay of a solution of the first mixed problem for the linearized system of Navier–Stokes equations in a domain with noncompact boundary. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 245-264. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a14/

[1] Mukminov F. Kh., “Stabilizatsiya reshenii pervoi smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Matem. sb., 111 (153) (1980), 503–521 | MR | Zbl

[2] Mukminov F. Kh., “Ob ubyvanii normy resheniya smeshannoi zadachi dlya parabolicheskogo uravneniya vysokogo poryadka”, Differents. uravneniya, 23 (1987), 1172–1180 | MR

[3] Tedeev A. F., “Stabilizatsiya reshenii pervoi smeshannoi zadachi dlya kvazilineinogo parabolicheskogo uravneniya vysokogo poryadka”, Differents. uravneniya, 25 (1989), 491–498 | MR | Zbl

[4] Maslennikova V. N., “Reshenie zadachi Koshi i ego asimptotika pri $t\to \infty $ dlya linearizovannykh uravnenii vraschayuscheisya vyazkoi zhidkosti”, DAN SSSR, 189 (1969), 1189–1192 | MR | Zbl

[5] Rusanov B. V., “Medlennoe nestatsionarnoe obtekanie kruglogo tsilindra potokom vyazkoi zhidkosti”, Vestn. LGU, 1955, 81–106 | Zbl

[6] Schonbek M. E., “$L_2$ desay for weak solutions of the Navier–Stokes equations”, Arch. Ration Mech. and Anal., 88 (1985), 209–222 | DOI | MR | Zbl

[7] Wiegner M., “Desay results for weak solutions of the Navier–Stokes equations”, J. London Math. Soc., 35 (1987), 303–313 | DOI | MR | Zbl

[8] Beirao de Veiga H., “Existance and asymptotic behaviour for strong solutions of the Navier–Stokes equations in whole space”, Indiana Univ. Math. J., 36 (1987), 149–166 | DOI | MR | Zbl

[9] Miyakawa T., “On $L_2$ desay of weak solutions of the Navier–Stokes equations in $R^3$”, Math. Z., 192 (1986), 135–148 | DOI | MR | Zbl

[10] Borchers S., Miyakawa T., “$L_2$ desay for Navier–Stokes flow in half spaces”, Math. Annalen, 282 (1988), 139–155 | DOI | MR | Zbl

[11] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[12] Bykhovskii E. B., Smirnov N. V., “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno summiruemykh po zadannoi oblasti, i operatorakh vektornogo analiza”, Tr. MIAN, 59, Nauka, M., 1960, 5–36 | MR | Zbl

[13] Temam R., Uravneniya Nave–Stoksa: teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[14] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[15] Guschin A. K., “Stabilizatsiya reshenii vtoroi kraevoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Matem. sb., 101 (1976), 459–499 | MR | Zbl

[16] Ushakov V. I., “Stabilizatsiya reshenii tretei smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka v netsillindricheskoi oblasti”, Matem. sb., 111 (153) (1980), 95–115 | MR | Zbl

[17] Heywood J. G., “The Navier–Stokes equations: on the existance, regularity and desay of solutions”, Indiana Univ. Math. J., 29 (1980), 639–681 | DOI | MR | Zbl

[18] Maslennikova V. N., “O skorosti zatukhaniya vikhrya v vyazkoi zhidkosti”, Tr. MIAN, 126, Nauka, M., 1973, 46–72 | MR | Zbl

[19] Maslennikova V. N., Bogovskii M. E., “O sistemakh Soboleva s tremya prostranstvennymi peremennymi”, Differentsialnye uravneniya s chastnymi proizvodnymi, Tr. seminara S. L. Soboleva, Nauka, Novosibirsk, 1976, 49–68

[20] Glushko A. V., “Asimptotika po vremeni resheniya zadachi Koshi dlya linearizovannoi sistemy uravnenii Nave–Stoksa s nulevoi pravoi chastyu”, Teoriya kubaturnykh formul i prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, Tr. seminara S. L. Soboleva, Nauka, Novosibirsk, 1981, 5–33 | MR | Zbl

[21] Maslennikova V. N., Glushko A. V., “Teoremy o lokalizatsii tauberovskogo tipa i skorost zatukhaniya resheniya sistemy gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, Tr. MIAN, 181, Nauka, M., 1988, 156–186 | MR | Zbl