On the theory of the matrix Riccati equation. II
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 213-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a continuation of the author's previous paper [1] with the same title, which contains an investigation of properties of the matrix Riccati equation with variable coefficients that arises from variational problems. For the investigation the matrix cross-ratio was introduced – an invariant of a quadruple of points in the Grassmann manifold of $n$-dimensional subspaces in a $2n$-dimensional linear space with respect to the action of the unimodular group of generalized linear fractional transformations on the Grassmann manifold. The properties of the matrix cross-ratio are investigated in the present article; classes of complex Riccati equations giving rise to flows on homogeneous Siegel domains of types I, II, and III are distinguished; a matrix analogue of the Schwarzian derivative is introduced.
@article{SM_1994_77_1_a12,
     author = {M. I. Zelikin},
     title = {On the theory of the~matrix {Riccati} {equation.~II}},
     journal = {Sbornik. Mathematics},
     pages = {213--230},
     year = {1994},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a12/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - On the theory of the matrix Riccati equation. II
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 213
EP  - 230
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_1_a12/
LA  - en
ID  - SM_1994_77_1_a12
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T On the theory of the matrix Riccati equation. II
%J Sbornik. Mathematics
%D 1994
%P 213-230
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_77_1_a12/
%G en
%F SM_1994_77_1_a12
M. I. Zelikin. On the theory of the matrix Riccati equation. II. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 213-230. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a12/

[1] Zelikin M. I., “K teorii matrichnogo uravneniya Rikkati”, Matem. sb., 182:7 (1991), 970–984

[2] Wolf J., “Geodesic spheres in Grassman manifolds”, Illinois J. Math., 7:3 (1963), 425–462 | MR

[3] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[4] Zigel K., Avtomorfnye funktsii neskolkikh kompleksnykh peremennykh, IL., M., 1954

[5] Klein F., Lektsii ob ikosaedre i reshenii uravnenii pyatoi stepeni, Nauka, M., 1989 | MR

[6] M. Schiffer, “Some recent developments in the theory of conformal mapping”, Appendix to: R. Courant, Dirichlets Principle, Conformal Mapping, and Minimal Surfaces, Interscience Publishers, N.Y., 1950, 249–323 | MR

[7] Tyurin A. N., “O periodakh kvadratichnykh differentsialov”, UMN, 33:6 (1978), 147–195 | MR