Integral inclusions with nonconvex images, and their applications to boundary value problems for differential inclusions
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 193-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains a treatment of an integral inclusion of Hammerstein type generated by the product of a linear integral operator and a multivalued mapping with images convex with respect to switching. This product is not a Volterra operator in general. Estimates of the closeness of a solution of the inclusion to a given function are proved on the basis of the theory of existence of continuous branches of multivalued mappings with images convex with respect to switching. By using these estimates it is proved that the solution set of the original inclusion is dense in the solution set of the convexified inclusion in the space of continuous functions. In the case when the kernel of the linear operator consists solely of the zero element the 'bang-bang' principle is proved for the Hammerstein inclusion. In the second part of the paper the theory is used for investigating boundary value problems for differential inclusions with nonconvex right-hand side.
@article{SM_1994_77_1_a11,
     author = {A. I. Bulgakov},
     title = {Integral inclusions with nonconvex images, and their applications to boundary value problems for differential inclusions},
     journal = {Sbornik. Mathematics},
     pages = {193--212},
     year = {1994},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a11/}
}
TY  - JOUR
AU  - A. I. Bulgakov
TI  - Integral inclusions with nonconvex images, and their applications to boundary value problems for differential inclusions
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 193
EP  - 212
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_1_a11/
LA  - en
ID  - SM_1994_77_1_a11
ER  - 
%0 Journal Article
%A A. I. Bulgakov
%T Integral inclusions with nonconvex images, and their applications to boundary value problems for differential inclusions
%J Sbornik. Mathematics
%D 1994
%P 193-212
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_77_1_a11/
%G en
%F SM_1994_77_1_a11
A. I. Bulgakov. Integral inclusions with nonconvex images, and their applications to boundary value problems for differential inclusions. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 193-212. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a11/

[1] Lasota A., Opial Z., “An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations”, Bull. Acad. pol. sci. Ser. sci. math., astron. et phys., 13:11/12 (1965), 781–786 | MR | Zbl

[2] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN SSSR, 169, Nauka, M., 1985, 194–252 | MR | Zbl

[3] Antosiewicz H. A., Cellina A., “Continuous selectors and differential relations”, J. Diff. Equat., 19:2 (1975), 386–398 | DOI | MR | Zbl

[4] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[5] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[6] Bulgakov A. I., “Funktsionalno-differentsialnoe vklyuchenie s operatorom, imeyuschim nevypuklye obrazy”, Differents. uravneniya, 23:10 (1987), 1659–1668 | MR | Zbl

[7] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl

[8] Bulgakov A. I., “Nekotorye voprosy differentsialnykh i integralnykh vklyuchenii s nevypukloi pravoi chastyu”, Funktsionalno-differentsialnye uravneniya, Izd-vo PPI, Perm, 1991, 28–57 | MR

[9] Bulgakov A. I., “Nepreryvnye vetvi mnogoznachnykh otobrazhenii i funktsionalno-differentsialnye vklyucheniya s nevypukloi pravoi chastyu”, Matem. sb., 181:11 (1990), 1427–1442 | MR

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[11] Bulgakov A. I., Lyapin L. N., “Nekotorye svoistva mnozhestva reshenii integralnogo vklyucheniya Volterra–Gammershteina”, Differents. uravneniya, 15:3 (1979), 1465–1472 | MR

[12] Azbelev N. V., Tsalyuk Z. B., “Ob integralnykh neravenstvakh”, Matem. sb., 56 (98) (1962), 325–342 | MR

[13] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii, Izd-vo VGU, Voronezh, 1985 | MR

[14] Michael E. A., “Selected selection theorems”, Amer. math. mon., 4 (1956), 233–236 | DOI | MR

[15] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[16] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[17] Rakhmatullina L. F., “O regulyarizatsii lineinykh kraevykh zadach”, Izv. vuzov. Matematika., 1987, no. 7, 37–43 | MR | Zbl

[18] Blagodatskikh V. I., “Nekotorye rezultaty po teorii differentsialnykh vklyuchenii”, Summer School on Ordinary Differential Equations, Part 2 (Brno), 1974, 29–67

[19] Polovinkin E. S., Teoriya mnogoznachnykh otobrazhenii, Izd-vo MFTI, M., 1983

[20] Blagodatskikh V. I., Teoriya differentsialnykh vklyuchenii, Ch. 1, Izd-vo MGU, M., 1979

[21] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 19, VINITI, 1982, 127–231 | MR

[22] Filippov A. F., “Klassicheskie resheniya differentsialnykh uravnenii s mnogoznachnoi pravoi chastyu”, Vestn. MGU. Ser 1. Matematika, mekhanika, 1967, no. 3, 16–26 | MR | Zbl

[23] Pianigiani G., “On the fundamental theory of multivalued differential equations”, J. Diff. Equat., 25:1 (1977), 30–38 | DOI | MR | Zbl

[24] Chugunov P. I., “Svoistva reshenii differentsialnykh vklyuchenii i upravlyaemye sistemy.”, Prikl. matematika i pakety prikl. programm, Izd-vo SEI SO AN SSSR, Irkutsk, 1980, 155–179

[25] Tolstonogov A. A., Chugunov P. I., “O mnozhestve reshenii differentsialnogo vklyucheniya v banakhovom prostranstve”, Sib. matem. zhurn., 24:6 (1983), 144–159 | MR | Zbl

[26] Bulgakov A. I., “Funktsionalno-differentsialnye vklyucheniya s nevypukloi pravoi chastyu”, Differents. uravneniya, 26:11 (1990), 1872–1878 | MR | Zbl

[27] Papargeorgiou N. S., “Functional-differential inclusions in Banach spaces with nonconvex right hand side”, Funkcial. Ekvac., 32 (1989), 145–156 | MR

[28] Bressan A., “On a bang-bang principle for nonlinear systems”, Boll. Unione Math. Italiana (Suppl.) Anal. Funz. Appl., 1 (1980), 53–59 | MR | Zbl

[29] Tolstonogov A. A., Finogenko I. A., “O resheniyakh differentsialnogo vklyucheniya s polunepreryvnoi snizu nevypukloi pravoi chastyu v banakhovom prostranstve”, Matem. sb., 125 (167) (1984), 199–230 | MR

[30] Suslov S. I., Nelineinyi beng-beng printsip. I: Konechnomernyi sluchai, Prepr. SO AN SSSR. In-t matem. No 11, Novosibirsk, 1989, 14 pp.

[31] Suslov S. I., Nelineinyi beng-beng printsip. II: Beskonechnomernyi sluchai, Prepr. SO AN SSSR. In-t matem. No 12, Novosibirsk, 1989, 18 pp.

[32] Krein M. G., Rutman M. A., “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, UMN, 3:1 (23) (1948), 3–95 | MR | Zbl

[33] Irisov A. E., Tonkov E. L., “O zamykanii mnozhestva periodicheskikh reshenii differentsialnogo vklyucheniya”, Differentsialnye i integralnye uravneniya, Izd-vo GGU, Gorkii, 1983, 32–38 | MR

[34] Bulgakov A. I., “Nepreryvnye vetvi mnogoznachnykh otobrazhenii i integralnye vklyucheniya s nevypuklymi obrazami i ikh prilozheniya, I”, Differents. uravneniya, 28:3 (1992), 371–379 | MR | Zbl