On the stabilization of solutions of weakly coupled cooperative parabolic systems
Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 177-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work it is shown that almost all solutions of weakly coupled parabolic systems either stabilize or blow up. It is also shown, under an additional condition, that almost all solutions either blow up or become componentwise monotonic, starting from some instant.
@article{SM_1994_77_1_a10,
     author = {M. P. Vishnevskii},
     title = {On the stabilization of solutions of weakly coupled cooperative parabolic systems},
     journal = {Sbornik. Mathematics},
     pages = {177--192},
     year = {1994},
     volume = {77},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1994_77_1_a10/}
}
TY  - JOUR
AU  - M. P. Vishnevskii
TI  - On the stabilization of solutions of weakly coupled cooperative parabolic systems
JO  - Sbornik. Mathematics
PY  - 1994
SP  - 177
EP  - 192
VL  - 77
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1994_77_1_a10/
LA  - en
ID  - SM_1994_77_1_a10
ER  - 
%0 Journal Article
%A M. P. Vishnevskii
%T On the stabilization of solutions of weakly coupled cooperative parabolic systems
%J Sbornik. Mathematics
%D 1994
%P 177-192
%V 77
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1994_77_1_a10/
%G en
%F SM_1994_77_1_a10
M. P. Vishnevskii. On the stabilization of solutions of weakly coupled cooperative parabolic systems. Sbornik. Mathematics, Tome 77 (1994) no. 1, pp. 177-192. http://geodesic.mathdoc.fr/item/SM_1994_77_1_a10/

[1] Zelenyak T. I., “O stabilizatsii reshenii kraevykh zadach dlya parabolicheskogo uravneniya vtorogo poryadka s odnoi prostranstvennoi peremennoi”, Differents. uravneniya, 4 (1968), 34–45 | Zbl

[2] Zelenyak T. I., “O kachestvennykh svoistvakh reshenii kvazilineinykh smeshannykh zadach dlya uravnenii parabolicheskogo tipa”, Matem. sb., 104 (146) (1977), 486–510 | MR | Zbl

[3] Belonosov V. S., Zelenyak T. I., Nelokalnye problemy v teorii kvazilineinykh parabolicheskikh uravnenii, Izd-vo NGU, Novosibirsk, 1972

[4] Matano H., “Convergence of solutions of one dimensional semilinear parabolic equations”, J. Math. Kyoto Univ., 18 (1978), 221–227 | MR | Zbl

[5] Matano H., “Nonincrease of the lap-number of a solution for one-dimentional semilinear parabolic equations”, J. Fac. Sci. Univ. Tokyo Sec. IA, 29 (1982), 401–441 | MR | Zbl

[6] Hale J. K., “Asymptotic behavior and dynamics in infinite dimensions”, Nonlinear Differential Equations, Researh Notes Math., 132, Pitman, Boston, 1985 | MR

[7] Nadirashvili N. S., “K dinamike nelineinykh parabolicheskikh uravnenii”, DAN SSSR, 309:6 (1989), 1302–1305 | MR

[8] Hirsch M. W., “Stability and convergence in strongly monotone dynamical systems”, J. Reine Angew. Math., 383 (1988), 1–53 | MR | Zbl

[9] Polǎčik P., “Convergence in smooth strongly monotone flows defined by semilinear parabolic equations”, J. Diff. Equat., 79 (1989), 89–110 | DOI | MR | Zbl

[10] Fokin M. V., “O predelnykh mnozhestvakh traektorii dinamicheskikh sistem gradientnogo tipa”, Matem. sb., 116 (158) (1981), 502–518 | MR

[11] Vishnevskii M. P., “Ogranichennye resheniya nelineinykh parabolicheskikh uravnenii”, Differents. uravneniya s chastnymi proizvodnymi, Izd-vo IM SO AN SSSR, 1987, 37–59

[12] Lions P. L., “Structure of the set of steady state solutions and asymptotic behavior of semilinear heat equations”, J. Diff. Equat., 59 (1984), 362–386 | DOI | MR

[13] Vishnevskii M. P., “Asimptoticheskoe povedenie reshenii smeshannykh zadach dlya kvazilineinykh parabolicheskikh uravnenii”, Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi, Izd-vo IM SO AN SSSR, 1988, 65–82 | MR

[14] Vishnevskii M. P., “O povedenii pri bolshom vremeni reshenii kvazilineinykh parabolicheskikh uravnenii s mnogimi prostranstvennymi peremennymi”, Dinamika sploshnoi sredy, 85 (1988), 31–41 | MR

[15] Vishnevskii M. P., “Periodicheskie resheniya avtonomnykh parabolicheskikh uravnenii”, Dinamika sploshnoi sredy, 98 (1990), 98–106 | MR

[16] Mora X., “Semilinear problems define semiflows on $C^k$ spaces”, Trans. Amer. Math. Soc., 278 (1983), 1–53 | DOI | MR

[17] Amann H., “Global existence for semilinear parabolic systems”, J. Reine Angew. Math., 360 (1985), 47–84 | MR

[18] Amann H., “Existence and regularity for semilinear parabolic evolution equation”, Ann. Sc. Norm. Pisa, 11 (1984), 593–676 | MR | Zbl

[19] Belonosov V. S., “Otsenki reshenii nelineinykh parabolicheskikh sistem v gelderovskikh klassakh s vesom i nekotorye prilozheniya”, Matem. sb., 110 (152) (1979), 163–188 | MR | Zbl

[20] Belonosov V. S., Vishnevskii M. P., “Ob ustoichivosti statsionarnykh reshenii nelineinykh parabolicheskikh sistem”, Matem. sb., 104(146) (1977), 535–558 | MR | Zbl

[21] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[22] Babin A. V., Vishik M. I., “Uniform finite-parameter asymptotics”, J. Math. pures et appl., 68 (1989), 399–445 | MR

[23] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., “Lineinye i kvazilineinye uravneniya parabolicheskogo tipa”, UMN, 41 (1986), 59–83 | MR | Zbl

[24] Protter M. H., Wainberger H., Maximum principles in differential equations, Springer-Verlag, 1984 | MR

[25] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, M., 1967

[26] Vishnevskii M. P., “Integralnye mnozhestva nelineinykh parabolicheskikh sistem”, Nekotorye prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, Izd-vo IM SO AN SSSR, 1986, 32–56

[27] Matano H., Chen X. Y., “Convergence, asymptotic periodicity and finite-point blow-up in one-dimensional semilinear heat equations”, J. Diff. Equat., 78 (1989), 160–190 | DOI | MR | Zbl

[28] Krein M. G., Rutman M. A., “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, UMN, 3:1 (1948), 3–95 | MR | Zbl

[29] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl