On passage to the limit in nonlinear variational problems
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 427-459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of variational problems with convex Lagrangians $f(x,\xi)$ subordinate to a nonstandard estimate \begin{gather*} -c_0+c_1|\xi|^{\alpha_1}\leqslant f(x,\xi)\leqslant c_0+c_2|\xi|^{\alpha_2}, \\ c_0\geqslant 0, c_1>0, \quad c_2>0, \quad 1<\alpha_1\leqslant\alpha_2. \end{gather*} The concepts of $\Gamma_1$-convergence and $\Gamma_2$-convergence are introduced for Lagrangians corresponding to boundary value problems of the first and second types. It is proved that the indicated class of Lagrangians is compact with respect to $\Gamma_1$-convergence and with respect to $\Gamma_2$-convergence. Applications to compactness theorems and to various concrete averaging problems are given.
@article{SM_1993_76_2_a9,
     author = {V. V. Zhikov},
     title = {On passage to the~limit in nonlinear variational problems},
     journal = {Sbornik. Mathematics},
     pages = {427--459},
     year = {1993},
     volume = {76},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a9/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - On passage to the limit in nonlinear variational problems
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 427
EP  - 459
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a9/
LA  - en
ID  - SM_1993_76_2_a9
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T On passage to the limit in nonlinear variational problems
%J Sbornik. Mathematics
%D 1993
%P 427-459
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a9/
%G en
%F SM_1993_76_2_a9
V. V. Zhikov. On passage to the limit in nonlinear variational problems. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 427-459. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a9/

[1] De Giorgi E., “Sulla convergenza di alcune successoni di integrali tipo dell'area”, Rend. Math. Roma, 12 (1975), 227–294

[2] Carbone L., Sbordone S., “Some properties of $\Gamma $-limits of integral functionals”, Ann. Mat. Pura ed Appl., 122 (1979), 1–60 | DOI | MR | Zbl

[3] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya odnogo klassa funktsionalov variatsionnogo ischisleniya”, DAN SSSR, 267:3 (1982), 524–528 | MR | Zbl

[4] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 961–985 | MR

[5] Zhikov V. V., “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 675–711 | MR

[6] Zhikov V. V., “Effekt Lavrenteva i usrednenie nelineinykh variatsionnykh zadach”, Differents. uravneniya, 27:1 (1991), 42–50 | MR | Zbl

[7] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[8] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[9] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[10] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[11] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[12] Zhikov V. V., “Asimptoticheskie zadachi, svyazannye s uravneniem teploprovodnosti v perforirovannykh oblastyakh”, Matem. sb., 181:10 (1990), 1283–1305 | Zbl

[13] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1991 | MR | Zbl

[14] Berdichevskii V. L., Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983 | MR

[15] Dykhne A. M., “Provodimost dvumernoi dvukhfaznoi sistemy”, ZhETF, 39:7 (1970), 110–115 | MR

[16] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974 | MR

[17] Khruslov E. Ya., “Asimptoticheskoe povedenie reshenii vtoroi kraevoi zadachi pri izmelchenii granitsy oblasti”, Matem. sb., 106 (148) (1978), 604–621 | MR | Zbl

[18] Kovalevskii A. A., Lamonov S. A., Skrypnik I. V., Osrednenie nelineinykh granichnykh zadach, Preprint No 8440, In-t matem. AN USSR, Kiev

[19] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[20] Kozlov S. M., “Geometricheskie aspekty usredneniya”, UMN, 44:2 (1989), 79–120 | MR | Zbl

[21] Serrin J., “On the definition and properties of certain variational integrals”, Trans A.M.S., 101 (1961), 139–167 | DOI | MR | Zbl

[22] Buttazzo G., Dal Maso G., “Integral representation and relaxation of local functionals”, Nonlinear Anal., 9 (1985), 515–532 | DOI | MR | Zbl