On passage to the~limit in nonlinear variational problems
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 427-459

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of variational problems with convex Lagrangians $f(x,\xi)$ subordinate to a nonstandard estimate \begin{gather*} -c_0+c_1|\xi|^{\alpha_1}\leqslant f(x,\xi)\leqslant c_0+c_2|\xi|^{\alpha_2}, \\ c_0\geqslant 0, c_1>0, \quad c_2>0, \quad 1\alpha_1\leqslant\alpha_2. \end{gather*} The concepts of $\Gamma_1$-convergence and $\Gamma_2$-convergence are introduced for Lagrangians corresponding to boundary value problems of the first and second types. It is proved that the indicated class of Lagrangians is compact with respect to $\Gamma_1$-convergence and with respect to $\Gamma_2$-convergence. Applications to compactness theorems and to various concrete averaging problems are given.
@article{SM_1993_76_2_a9,
     author = {V. V. Zhikov},
     title = {On passage to the~limit in nonlinear variational problems},
     journal = {Sbornik. Mathematics},
     pages = {427--459},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a9/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - On passage to the~limit in nonlinear variational problems
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 427
EP  - 459
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a9/
LA  - en
ID  - SM_1993_76_2_a9
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T On passage to the~limit in nonlinear variational problems
%J Sbornik. Mathematics
%D 1993
%P 427-459
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a9/
%G en
%F SM_1993_76_2_a9
V. V. Zhikov. On passage to the~limit in nonlinear variational problems. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 427-459. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a9/