Sharp estimnew series of simple Lie algebras of characteristic~3
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 389-406

Voir la notice de l'article provenant de la source Math-Net.Ru

Three new series of simple finite-dimensional Lie algebras over a field of characteristic 3 are constructed. For explicit realization, these algebras can be represented as a sum of a Lie algebra of general or special Cartan type and of certain of its tensor modules. The algebras have gradings of depth 2 or 4, with a classical zero component; and the author gives a characterization for them in the class of all graded Lie algebras. In order to prove nonisomorphism of these algebras with the Lie algebras of Cartan type, the subalgebras containing a certain invariant set are studied. With a view of systematizing the known examples of simple finite-dimensional Lie algebras of characteristic 3, analogous realizations of two previously known series are also presented.
@article{SM_1993_76_2_a7,
     author = {S. M. Skryabin},
     title = {Sharp estimnew series of simple {Lie} algebras of characteristic~3},
     journal = {Sbornik. Mathematics},
     pages = {389--406},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a7/}
}
TY  - JOUR
AU  - S. M. Skryabin
TI  - Sharp estimnew series of simple Lie algebras of characteristic~3
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 389
EP  - 406
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a7/
LA  - en
ID  - SM_1993_76_2_a7
ER  - 
%0 Journal Article
%A S. M. Skryabin
%T Sharp estimnew series of simple Lie algebras of characteristic~3
%J Sbornik. Mathematics
%D 1993
%P 389-406
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a7/
%G en
%F SM_1993_76_2_a7
S. M. Skryabin. Sharp estimnew series of simple Lie algebras of characteristic~3. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 389-406. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a7/