@article{SM_1993_76_2_a6,
author = {A. Yu. Volovikov},
title = {A theorem of {Bourgin{\textendash}Yang} type for $\mathbb{Z}_p^n$-action},
journal = {Sbornik. Mathematics},
pages = {361--387},
year = {1993},
volume = {76},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a6/}
}
A. Yu. Volovikov. A theorem of Bourgin–Yang type for $\mathbb{Z}_p^n$-action. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 361-387. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a6/
[1] Babenko I.K., Bogatyi S.A., “K otobrazheniyu sfery v evklidovo prostranstvo”, Matem. zametki, 46:3 (1989), 3–8 | MR | Zbl
[2] Bogatyi S.A., “Topologicheskie metody v kombinatornykh zadachakh”, UMN, 41:6 (1986), 37–48 | MR
[3] Bogatyi S.A., Khimshiashvili G.N., “K probleme Knastera otobrazheniya sfer v pryamuyu”, Tiraspolskii simpozium po obschei topologii i ee prilozheniyam, Shtinitsa, Kishinev, 1985, 28–30
[4] Bredon G., Teoriya puchkov, Nauka, M., 1988 | MR | Zbl
[5] Venkov B.B., “O kharakteristicheskikh klassakh dlya konechnykh grupp”, DAN SSSR, 6:6 (1961), 1274–1277 | MR
[6] Volovikov A.Yu., “O teoreme Burgina–Yanga”, UMN, 35:3 (1980), 159–162 | MR | Zbl
[7] Volovikov A.Yu., “Otobrazheniya svobodnykh $\mathbb Z_p$-prostranstv v mnogoobraziya”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 36–55 | MR | Zbl
[8] Volovikov A.Yu., “K teoreme Yanga o funktsiyakh na sfere”, IX Vsesoyuznaya geometricheskaya konferentsiya. Tez. soobsch., Shtinitsa, 1988, 68–69 | MR
[9] Volovikov A.Yu., “Teorema tipa Burgina–Yanga dlya $\mathbb Z_p^n$-deistviya”, III Vsesoyuznaya shkola “Pontryaginskie chteniya. Optimalnoe upravlenie. Geometriya i analiz”: Tez. dokl., Kemerovo, 1990, 16
[10] Golubitskii M., Giiemin V., Ustoichivye otobrazheniya i ikh osobennosti., Mir, M., 1977 | MR
[11] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR
[12] Makeev V.V., “Prostranstvennye obobscheniya nekotorykh teorem o vypuklykh figurakh”, Matem. zametki, 36:3 (1984), 405–415 | MR | Zbl
[13] Makeev V.V., “O nekotorykh voprosakh nepreryvnykh otobrazhenii sfer i zadachakh kombinatornoi geometrii”, Geometricheskie voprosy teorii funktsii i mnozhestv, Kalinin., 1986, 75–85 | MR | Zbl
[14] Makeev V.V., “Zadacha Knastera o nepreryvnykh otobrazheniyakh sfery v evklidovo prostranstvo”, Issledovaniya po topologii 6, Zap. Nauch. seminarov LOMI, 167, Nauka, L., 1988, 169–178 | MR | Zbl
[15] Makeev V.V., “Zadacha Knastera i pochti sfericheskie secheniya”, Matem. sb., 180:3 (1989), 424–431 | MR | Zbl
[16] Stinrod N., Epstein L., Kogomologicheskie operatsii, Nauka, M., 1983 | MR
[17] Shvarts A.S., “Nekotorye otsenki roda topologicheskogo prostranstva v smysle Krasnoselskogo”, UMN, 12:4 (1957), 209–214 | MR | Zbl
[18] Shvarts A.S., “Rod rassloennogo prostranstva”, Tr. MMO, 11, 1962, 99–126 | Zbl
[19] Alexander J.C., Yorke J.A., “The homotopy continuation method: numerically implementable topological procedures”, Trans. Amer. Math. Soc., 242 (1978), 271–284 | DOI | MR | Zbl
[20] Alligood K.T., “Topological conditions for continuation of fixed points”, Lect. Notes Math., 886, 1981, 20–32 | MR | Zbl
[21] Bourgin D.G., “Multiplicity of solutions in frame mappings”, Illinois J. Math., 9 (1965), 169–177 | MR | Zbl
[22] Cohen F., Lusk E.L., “Configuration-like spaces and the Borsuk–Ulam theorem”, Proc. Amer. Math. Soc., 56 (1976), 313–317 | DOI | MR | Zbl
[23] Dikson L.E., “A fundamental system of invariants of the general modular linear group with a solution of the form problem”, Trans. Amer. Math. Soc., 12 (1911), 75–98 | DOI | MR
[24] Fadell E.R., Rabinowitz P.M., “Bifurcation for odd potential operators and alternative topological index”, J. Funct. Anal., 26 (1977), 48–67 | DOI | MR | Zbl
[25] Fadell E.R., Husseini S., “An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang Theorems”, Ergodic theory and dynamical systems, 8*. Spec. Issue (1988), 73–85 | MR | Zbl
[26] Haefliger A., “Points multiples d'une application et produit cyclique reduit”, Amer. J. Math., 83 (1961), 57–70 | DOI | MR | Zbl
[27] Knaster B., “Problem 4”, Colloq. Math., 1947, no. 1, 30
[28] Mann B.M., Milgram R.J., “On the Chern classes of the regular representations of some finite groups”, Proc. Edinburgh Math. Soc., 25 (1982), 259–268 | DOI | MR | Zbl
[29] Mui H., “Modular invariant theory and cohomology algebras of symmetric groups”, J. Fac. Sci. Univ. Tokyo, 22 (1975), 319–369 | MR | Zbl
[30] Munkholm H.J., “Borsuk–Ulam type theorems for proper $\mathbb Z_p$-actions on (mod $p$ homology) $n$-spheres”, Math. Scand., 24 (1969), 167–185 | MR | Zbl
[31] Nakaoka M., “Generalizations of Borsuk–Ulam theorem”, Osaka J. Math., 7 (1970), 423–441 | MR | Zbl
[32] Volovikov A., “Dimension and $C$-essentiality of $\mathbb Z_p$-coincidence set of map”, $Q$ $A$ in General Topology, 8. Spec. Issue (1990), 207–217 | MR | Zbl
[33] Yamabe H., Yujobo Z., “On the continuous functions defined on a sphere”, Osaka Math. J., 2:1 (1950), 19–22 | MR | Zbl
[34] Yang C.T., “On maps from spheres to Euclidean spaces”, Amer. J. Math., 79 (1957), 725–732 | DOI | MR | Zbl
[35] Fadell E., Husseini S., “Relative cohomological index theories”, Adv. in Math., 64 (1987), 1–87 | DOI | MR | Zbl
[36] Hsiang W.Y., Cohomology theory of topological transformation groups, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR
[37] Jaworowski J., “Balanced orbits of maps of $S^1$ and $S^3$ actions”, Proc. Amer. Math. Soc., 98 (1986), 158–162 | DOI | MR | Zbl
[38] Li C.Q., “On solutions of frame mappings into manifolds”, Lect. Notes in Math., 1411, 1989, 143–147 | MR | Zbl
[39] Mui H., “Cohomology operations derived from modular invariants”, Math. Z., 193 (1986), 151–163 | DOI | MR | Zbl
[40] Munkholm H.J., “On the Borsuk–Ulam theorem for $\mathbb Z_{p^\alpha}$ actions on $S^{2n-1}$ and maps $S^{2n-1}\to\mathbb R^m$”, Osaka J. Math., 7 (1970), 451–456 | MR | Zbl