Ates of the~rate of stabilization of solutions of exterior mixed problems for a~class of evolution systems
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 331-359
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the behavior for large time of solutions of the exterior mixed problem for the evolution system
$$
u_{tt}+A(x,D_x)u=0,
$$
where $A(x,D_x)$ is a strongly elliptic operator of order $2l$ ($ l\geqslant1$). Sharp estimates are obtained for certain weighted norms of the solutions as $t\to\infty$.
@article{SM_1993_76_2_a5,
author = {B. V. Kapitonov},
title = {Ates of the~rate of stabilization of solutions of exterior mixed problems for a~class of evolution systems},
journal = {Sbornik. Mathematics},
pages = {331--359},
publisher = {mathdoc},
volume = {76},
number = {2},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a5/}
}
TY - JOUR AU - B. V. Kapitonov TI - Ates of the~rate of stabilization of solutions of exterior mixed problems for a~class of evolution systems JO - Sbornik. Mathematics PY - 1993 SP - 331 EP - 359 VL - 76 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a5/ LA - en ID - SM_1993_76_2_a5 ER -
B. V. Kapitonov. Ates of the~rate of stabilization of solutions of exterior mixed problems for a~class of evolution systems. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 331-359. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a5/