Regular isometric immersion in the large of two-dimensional metrics of nonpositive curvature
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 317-329
Cet article a éte moissonné depuis la source Math-Net.Ru
The author proves the possibility of a regular isometric immersion in three-dimensional Euclidean space of certain classes of unbounded domains on complete Riemannian manifolds of nonpositive curvature that are homeomorphic to the plane. This is an extension and development of the results of the author published in [1] and [2].
@article{SM_1993_76_2_a4,
author = {D. V. Tunitsky},
title = {Regular isometric immersion in the~large of two-dimensional metrics of nonpositive curvature},
journal = {Sbornik. Mathematics},
pages = {317--329},
year = {1993},
volume = {76},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a4/}
}
D. V. Tunitsky. Regular isometric immersion in the large of two-dimensional metrics of nonpositive curvature. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 317-329. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a4/
[1] Tunitskii D. V., “O regulyarnom izometricheskom pogruzhenii v $\text {\rm E}^3 $ neogranichennykh oblastei otritsatelnoi krivizny”, Matem. sb., 134 (176):1 (9) (1987), 119–134 | MR
[2] Tunitskii D. V., “O suschestvovanii resheniya odnoi vyrozhdayuscheisya sistemy giperbolicheskikh uravnenii i ego geometricheskikh prilozheniyakh”, Prikladnaya matematika i matematicheskoe obespechenie EVM, MGU, M., 1985, 141–143
[3] Pogorelov A. V., Differentsialnaya geometriya, Nauka, M., 1969 | MR
[4] Poznyak E. G., “O regulyarnoi realizatsii v tselom dvumernykh metrik otritsatelnoi krivizny”, DAN SSSR, 170 (1966), 786–789 | MR | Zbl