Traces of functions with spacelike graphs, and the extension problem under restrictions on the gradient
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 305-316 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $D\subset\mathbb{R}^n$ be a domain, and suppose that for each $x\in D$ a subset $\Xi(x)$ of $\mathbb{R}^n$ is given. The problem is posed of finding conditions under which a function $\varphi(x)$ defined on the boundary $\partial D$ can be extended to a $C^1$-function $f(x)$ defined in $D$ and such that the gradient satisfies $\nabla f(x)\in\Xi(x)$. This problem is solved for the case when $\Xi(x)$ is a continuous distribution of bounded convex sets. An application is given to the description of the trace of a function with spacelike graph in a Lorentzian warped product.
@article{SM_1993_76_2_a3,
     author = {A. A. Klyachin and V. M. Miklyukov},
     title = {Traces of functions with spacelike graphs, and the~extension problem under restrictions on the~gradient},
     journal = {Sbornik. Mathematics},
     pages = {305--316},
     year = {1993},
     volume = {76},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a3/}
}
TY  - JOUR
AU  - A. A. Klyachin
AU  - V. M. Miklyukov
TI  - Traces of functions with spacelike graphs, and the extension problem under restrictions on the gradient
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 305
EP  - 316
VL  - 76
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a3/
LA  - en
ID  - SM_1993_76_2_a3
ER  - 
%0 Journal Article
%A A. A. Klyachin
%A V. M. Miklyukov
%T Traces of functions with spacelike graphs, and the extension problem under restrictions on the gradient
%J Sbornik. Mathematics
%D 1993
%P 305-316
%V 76
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a3/
%G en
%F SM_1993_76_2_a3
A. A. Klyachin; V. M. Miklyukov. Traces of functions with spacelike graphs, and the extension problem under restrictions on the gradient. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 305-316. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a3/

[1] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1985

[2] Fraherty F. G., “The boundary value problem for maximal hypersurfaces”, Proc. Nat. Acad. Sci. USA, 76:10 (1979), 4765–4767 | DOI | MR

[3] Bartnik R., Simon L., “Spacelike hypersurfaces with prescribed boundary values and mean curvature”, Comm. Math. Phys., 87:1 (1982), 131–152 | DOI | MR | Zbl

[4] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985 | MR

[5] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[6] Vodopyanov S. K., Formula Teilora i funktsionalnye prostranstva, Izd-vo Novosib. un-ta, Novosibirsk, 1988 | MR

[7] Rokafeller R., Vypuklyi analiz, Mir, M., 1973

[8] Rund Kh., Differentsialnaya geometriya finslerovykh prostranstv, Nauka, M., 1981 | MR | Zbl

[9] Klyachin A. A., Miklyukov V. M., “Prostranstvennopodobnye giperpoverkhnosti i zadacha o prodolzhenii funktsii s ogranicheniyami na gradient”, DAN SSSR, 320:4 (1991), 781–784 | MR | Zbl