Traces of functions with spacelike graphs, and the~extension problem under restrictions on the~gradient
Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 305-316

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D\subset\mathbb{R}^n$ be a domain, and suppose that for each $x\in D$ a subset $\Xi(x)$ of $\mathbb{R}^n$ is given. The problem is posed of finding conditions under which a function $\varphi(x)$ defined on the boundary $\partial D$ can be extended to a $C^1$-function $f(x)$ defined in $D$ and such that the gradient satisfies $\nabla f(x)\in\Xi(x)$. This problem is solved for the case when $\Xi(x)$ is a continuous distribution of bounded convex sets. An application is given to the description of the trace of a function with spacelike graph in a Lorentzian warped product.
@article{SM_1993_76_2_a3,
     author = {A. A. Klyachin and V. M. Miklyukov},
     title = {Traces of functions with spacelike graphs, and the~extension problem under restrictions on the~gradient},
     journal = {Sbornik. Mathematics},
     pages = {305--316},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1993_76_2_a3/}
}
TY  - JOUR
AU  - A. A. Klyachin
AU  - V. M. Miklyukov
TI  - Traces of functions with spacelike graphs, and the~extension problem under restrictions on the~gradient
JO  - Sbornik. Mathematics
PY  - 1993
SP  - 305
EP  - 316
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1993_76_2_a3/
LA  - en
ID  - SM_1993_76_2_a3
ER  - 
%0 Journal Article
%A A. A. Klyachin
%A V. M. Miklyukov
%T Traces of functions with spacelike graphs, and the~extension problem under restrictions on the~gradient
%J Sbornik. Mathematics
%D 1993
%P 305-316
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1993_76_2_a3/
%G en
%F SM_1993_76_2_a3
A. A. Klyachin; V. M. Miklyukov. Traces of functions with spacelike graphs, and the~extension problem under restrictions on the~gradient. Sbornik. Mathematics, Tome 76 (1993) no. 2, pp. 305-316. http://geodesic.mathdoc.fr/item/SM_1993_76_2_a3/